Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM (Department of Biotechnology & Bioengineering, Pukyong National University) ;
  • SHIN EUN-JUNG (Department of Biotechnology & Bioengineering/Department of Biomaterial Control, Dong-Eui University) ;
  • HONG SEUNG-PYO (BioLeaders Corp.,) ;
  • JEON SUNG-JONG (Department of Biotechnology & Bioengineering/Department of Biomaterial Control, Dong-Eui University) ;
  • NAM SOO-WAN (Department of Biotechnology & Bioengineering/Department of Biomaterial Control, Dong-Eui University)
  • Published : 2005.12.01

Abstract

The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

Keywords

References

  1. Chen, Y., J. Song, S. F. Sui, and D. N. Wang. 2003. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Prot. Expr. Purif. 32: 221-231 https://doi.org/10.1016/S1046-5928(03)00233-X
  2. Chung, B. H., M. J. Sohn, S. W. Oh, U. S. Park, H. Poo, B. S. Kim, M. J. Yu, and Y. I. Lee. 1998. Overproduction of human granulocyte colony stimulating factor fused to the PelB signal peptide in Escherichia coli. J. Ferment. Bioeng. 85: 443-446 https://doi.org/10.1016/S0922-338X(98)80092-5
  3. Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris,M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344
  4. James, E. A., C. Wang, Z. Wang, R. Reeves, J. H. Shin, N. S. Magnuson, and J. M. Lee. 2000. Production and characterization of biological active human GM-CSF secreted by genetically modified plant cells. Prot. Expr. Purif. 19:131-138 https://doi.org/10.1006/prep.2000.1232
  5. Jeong, K. J. and S. Y. Lee. 2001. Secretory production ofhuman granulocyte colony stimulating factor in Escherichia coli. Prot. Expr. Purif. 23: 311-318 https://doi.org/10.1006/prep.2001.1508
  6. Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, andJ. H. Seo. 2001. Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11: 92-96
  7. Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H.Seo. 2000. Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637
  8. Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim. 2000. Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbiol. Biotechnol. 10:287-292
  9. Kohda, J., Y. Endo, N. Okumura, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, H. Fukuda, and A. Kondo. 2002. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem. Eng. J. 10: 39-45 https://doi.org/10.1016/S1369-703X(01)00154-1
  10. Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa,K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606 https://doi.org/10.1263/jbb.90.600
  11. Kwak, Y. H., S. J. Kim, K. Y. Lee, and H. B. Kim. 2000.Stress responses of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10: 63-68
  12. Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam.2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
  13. Kwon, T. H., Y. M. Shin, Y. S. Kim, Y. S. Jang, and M. S. Yang. 2003. Secretory production of hGM-CSF with a high specific biological activity by transgenic plant cell suspension culture. Biotechnol. Bioproc. Eng. 8: 125-141
  14. Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. Mollens, and E. Nielsen. 2001. Expression of active human C1 inhibitor serpin domain in Escherichia coli. Prot. Expr.Purif. 22: 349-359 https://doi.org/10.1006/prep.2001.1445
  15. Lee, S. C. and P. O. Olins. 1992. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem. 267: 2849-2852
  16. Lu, H. S., C. L. Clogston, L. O. Narhi, L. A. Merewether, W. R. Pearl, and T. C. Boone. 1992. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. J. Biol. Chem. 267: 8770-8777
  17. Machida, S., Y. Yu, S. P. Singh, J. D. Kim, K. Hayashi, and Y. Kawata. 1998. Overproduction of $\beta$-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEBS Microbiol Lett. 159: 41-46
  18. Marino, V. J., A. E. S. Prync, and L. P. Roguin. 2003. Change in the accessiblity of an epitope of the human granulocyte colony stimulating factor after binding to receptors. Cytokine 21: 1-7 https://doi.org/10.1016/S1043-4666(02)00488-X
  19. Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889 https://doi.org/10.1128/AEM.66.3.884-889.2000
  20. Park, Y. C., C. S. Kim, N. S. Han, and J. H. Seo. 1995. Expression of cyclodextrin glucanotransferase from Bacillus macerans in recombinant Escherichia coli. Foods Biotechnol. 4: 290-295
  21. Perez-Perez, J., C. Martinez-Caja, J. L. Barbero, and J. Gutierrez. 1995. DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte colony stimulating factor in Escherichia coli. Biochem. Biophys. Res. Commun. 210: 524-529 https://doi.org/10.1006/bbrc.1995.1691
  22. Poo, H., J. J. Song, S. P. Hong, Y. H. Choi, S. W. Yun, J. H. Kim, S. C. Lee, S. G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor$\alpha$. Biotechnol. Lett. 24: 1185-1189 https://doi.org/10.1023/A:1016107230825
  23. Sareen, D., R. Sharma, and R. M. Vohra. 2001. Chaperoneassisted overexpression of an active D-carbamoylase from Agrobacterium tumefacians AM10. Prot. Expr. Purif. 23: 374-379 https://doi.org/10.1006/prep.2001.1532
  24. Schlee, S., P. Beinker, A. Akhrymuk, and J. Reinstein. 2004. A chaperone network for the resolubilization of protein aggregated: Direct interaction of ClpB and DnaK. J. Mol. Biol. 336: 275-285 https://doi.org/10.1016/j.jmb.2003.12.013
  25. Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345- 10349
  26. Thomas, J. G., A. Ayling, and F. Baneyx. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238 https://doi.org/10.1007/BF02785589
  27. Wall, J. G. and A. Pluckthun. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507-516 https://doi.org/10.1016/0958-1669(95)80084-0
  28. Weissman, J. S., C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton, and A. L.Horwich. 1995. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83: 577-587
  29. Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich. 1996. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490 https://doi.org/10.1016/S0092-8674(00)81293-3
  30. Yamamoto, A., A. Iwata, T. Saitoh, K. Tuchiya. T. Kanai, H. Tsujimoto, A. Hasegawa, A. Ishihama, and S. Ueda. 2002. Expression in Escherichia coli and purification of the functional feline granulocyte colony-stimulating factor. Vet. Immunol. Immunopathol. 90: 169-177 https://doi.org/10.1016/S0165-2427(02)00259-3
  31. Ziemienowicz, A., D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz. 1993. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/ GrpE, can reactivate heat-treated RNA polymerase. J. Biol. Chem. 268: 25425-25431