References
- Chen, Y., J. Song, S. F. Sui, and D. N. Wang. 2003. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Prot. Expr. Purif. 32: 221-231 https://doi.org/10.1016/S1046-5928(03)00233-X
- Chung, B. H., M. J. Sohn, S. W. Oh, U. S. Park, H. Poo, B. S. Kim, M. J. Yu, and Y. I. Lee. 1998. Overproduction of human granulocyte colony stimulating factor fused to the PelB signal peptide in Escherichia coli. J. Ferment. Bioeng. 85: 443-446 https://doi.org/10.1016/S0922-338X(98)80092-5
- Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris,M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344
- James, E. A., C. Wang, Z. Wang, R. Reeves, J. H. Shin, N. S. Magnuson, and J. M. Lee. 2000. Production and characterization of biological active human GM-CSF secreted by genetically modified plant cells. Prot. Expr. Purif. 19:131-138 https://doi.org/10.1006/prep.2000.1232
- Jeong, K. J. and S. Y. Lee. 2001. Secretory production ofhuman granulocyte colony stimulating factor in Escherichia coli. Prot. Expr. Purif. 23: 311-318 https://doi.org/10.1006/prep.2001.1508
- Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, andJ. H. Seo. 2001. Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11: 92-96
- Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H.Seo. 2000. Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637
- Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim. 2000. Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbiol. Biotechnol. 10:287-292
- Kohda, J., Y. Endo, N. Okumura, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, H. Fukuda, and A. Kondo. 2002. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem. Eng. J. 10: 39-45 https://doi.org/10.1016/S1369-703X(01)00154-1
- Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa,K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606 https://doi.org/10.1263/jbb.90.600
- Kwak, Y. H., S. J. Kim, K. Y. Lee, and H. B. Kim. 2000.Stress responses of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10: 63-68
- Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam.2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
- Kwon, T. H., Y. M. Shin, Y. S. Kim, Y. S. Jang, and M. S. Yang. 2003. Secretory production of hGM-CSF with a high specific biological activity by transgenic plant cell suspension culture. Biotechnol. Bioproc. Eng. 8: 125-141
- Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. Mollens, and E. Nielsen. 2001. Expression of active human C1 inhibitor serpin domain in Escherichia coli. Prot. Expr.Purif. 22: 349-359 https://doi.org/10.1006/prep.2001.1445
- Lee, S. C. and P. O. Olins. 1992. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem. 267: 2849-2852
- Lu, H. S., C. L. Clogston, L. O. Narhi, L. A. Merewether, W. R. Pearl, and T. C. Boone. 1992. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. J. Biol. Chem. 267: 8770-8777
-
Machida, S., Y. Yu, S. P. Singh, J. D. Kim, K. Hayashi, and Y. Kawata. 1998. Overproduction of
$\beta$ -glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEBS Microbiol Lett. 159: 41-46 - Marino, V. J., A. E. S. Prync, and L. P. Roguin. 2003. Change in the accessiblity of an epitope of the human granulocyte colony stimulating factor after binding to receptors. Cytokine 21: 1-7 https://doi.org/10.1016/S1043-4666(02)00488-X
- Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889 https://doi.org/10.1128/AEM.66.3.884-889.2000
- Park, Y. C., C. S. Kim, N. S. Han, and J. H. Seo. 1995. Expression of cyclodextrin glucanotransferase from Bacillus macerans in recombinant Escherichia coli. Foods Biotechnol. 4: 290-295
- Perez-Perez, J., C. Martinez-Caja, J. L. Barbero, and J. Gutierrez. 1995. DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte colony stimulating factor in Escherichia coli. Biochem. Biophys. Res. Commun. 210: 524-529 https://doi.org/10.1006/bbrc.1995.1691
-
Poo, H., J. J. Song, S. P. Hong, Y. H. Choi, S. W. Yun, J. H. Kim, S. C. Lee, S. G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor
$\alpha$ . Biotechnol. Lett. 24: 1185-1189 https://doi.org/10.1023/A:1016107230825 - Sareen, D., R. Sharma, and R. M. Vohra. 2001. Chaperoneassisted overexpression of an active D-carbamoylase from Agrobacterium tumefacians AM10. Prot. Expr. Purif. 23: 374-379 https://doi.org/10.1006/prep.2001.1532
- Schlee, S., P. Beinker, A. Akhrymuk, and J. Reinstein. 2004. A chaperone network for the resolubilization of protein aggregated: Direct interaction of ClpB and DnaK. J. Mol. Biol. 336: 275-285 https://doi.org/10.1016/j.jmb.2003.12.013
- Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345- 10349
- Thomas, J. G., A. Ayling, and F. Baneyx. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238 https://doi.org/10.1007/BF02785589
- Wall, J. G. and A. Pluckthun. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507-516 https://doi.org/10.1016/0958-1669(95)80084-0
- Weissman, J. S., C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton, and A. L.Horwich. 1995. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83: 577-587
- Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich. 1996. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490 https://doi.org/10.1016/S0092-8674(00)81293-3
- Yamamoto, A., A. Iwata, T. Saitoh, K. Tuchiya. T. Kanai, H. Tsujimoto, A. Hasegawa, A. Ishihama, and S. Ueda. 2002. Expression in Escherichia coli and purification of the functional feline granulocyte colony-stimulating factor. Vet. Immunol. Immunopathol. 90: 169-177 https://doi.org/10.1016/S0165-2427(02)00259-3
- Ziemienowicz, A., D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz. 1993. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/ GrpE, can reactivate heat-treated RNA polymerase. J. Biol. Chem. 268: 25425-25431