Characteristics of Microbial Biosurfactant as an Antifungal Agent Against Plant Pathogenic Fungus

  • YOO DAL-SOO (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Inha University) ;
  • LEE BAEK-SEOK (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Inha University) ;
  • KIM EUN-KI (Department of Biological Engineering, Division of Chemical Science and Biological Engineering, Inha University)
  • Published : 2005.12.01

Abstract

Characteristics of sophorolipid and rhamnolipid were evaluated as antifungal agents against plant pathogenic fungi. Eight percent of mycelial growth of plant pathogen (Phytophthora sp. and Pythium sp.) was inhibited by 200 mg/l of rhamnolipid or 500 mg/l of sophorolipid, and zoospore motility of Phytophthora sp. decreased by $90\%$ at 50 mg/l of rhamnolipid and $80\%$ at 100 mg/l of sophorolipid. The effective concentrations for zoospore lysis were two times higher than those of zoospore motility inhibition. The highest zoospore lysis was observed with Phytophthora capsici; $80\%$ lysis at 100 mg/I of di-rhamnolipid or lactonic sophorolipid, showing the dependency of structure on the lysis. In the pot test, the damping-off disease incidence ratio decreased to $42\%\;and\;33\%$ of control value at 2,000 mg/l sophorolipid and rhamnolipid, respectively. These results showed the potential of microbial glycolipid biosurfactants as an effective antifungal agent against damping-off plant pathogens.

Keywords

References

  1. Michael, E. and R. M. Miller. 1997. Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease 81: 4-11 https://doi.org/10.1094/PDIS.1997.81.1.4
  2. Ji, H. J., W. D. Cho, and C. H. Kim. 2000. pp. 101-105 In: Plant Pathogen in Korea. Korea Agriculture Developing Center, Suwon, Korea
  3. Manners, J. G. 1982. pp. 56-134. In: Principles of Plant Pathology. Cambridge University Press, Cambridge, U.K
  4. Mondal, S. N., K. Kaceyama, and M. Hyakumachi. 1995. Influence of soil matrix potential on the debilitation of oospores of Pythium aphanidermatum. Soil Biol. Biochem. 27: 1319-1324 https://doi.org/10.1016/0038-0717(95)00058-M
  5. Staples, R. C. 2002. Zoospores use electric fields to target roots. Trends Plant Sci. 7: 484-496
  6. Frank, N. M. and J. E. Loper. 1999. Soilborne plant diseases caused by Pythium spp.: Ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18: 111-181 https://doi.org/10.1016/S0735-2689(99)00389-5
  7. Shattock, H. 1998. Effect of metalaxyl on formation and germination of oospores of Phytophthora infestans. Plant Pathol. 47: 116-121 https://doi.org/10.1046/j.1365-3059.1998.00215.x
  8. Douglas, B. J., R. S. Livingston, J. J. Bisaha, K. E. Duncan, S. O. Pember, M. A. Picollelli, R. S. Schwartz, J. A. Sternberg, and X.-S. Tang. 1999. Mode of action of famoxadone. Pesticide Sci. 55: 105-118 https://doi.org/10.1002/(SICI)1096-9063(199902)55:2<105::AID-PS879>3.0.CO;2-D
  9. Nathalie, A., G. Jaworska, J.-L. Genet, and G. Bompeix. 2001. Biological mode of action of famoxadone on Plasmopara viticola and Phytophthora infestans. Crop Protect. 20: 253-260 https://doi.org/10.1016/S0261-2194(00)00156-3
  10. Cho, M. J., Y. K. Kim, and J. O. Ka. 2004. Molecular Differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14: 599-607
  11. Yi, Y. S., S. H. Kim, M. W. Kim, G. J. Choi, K. Y. Cho, J. K. Song, and Y. H. Lim. 2004. Antifungal activity of Streptomyces sp. against Puccinia recondite causing wheat leaf rust. J. Microbiol. Biotechnol.14: 422-425
  12. Greek, B. F. 1990. Detergent industry ponder product for new decade. Chem. Eng. News 68: 37-38
  13. Greek, B. F. 1991. Sales of detergents growing despite recession. Chem. Eng. News 69: 25-52
  14. Georgiou, G., S. C. Lin, and M. M. Sharma. 1992. Surface active compounds from microorganisms. Bio/Technology 10: 60-65 https://doi.org/10.1038/nbt0192-60
  15. Khire, J. M. and M. I. Khan. 1994. Microbial enhanced oil recovery (MEOR), part I. Importance and mechanism of MEOR. Enz. Microl. Technol. 16: 170-172 https://doi.org/10.1016/0141-0229(94)90081-7
  16. Layman, P. L. 1985. Industrial surfactant set for strong growth. Chem. Eng. News 23: 23-48
  17. Kang, C. B., K. I. Ryu, and K. H. Lim. 2000. Production and characterization of biosurfactant. J. Kor. Oil Chem. Soc. 17: 213-225
  18. Stanghellini, M. E. and R. E. Miller. 1999. Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease 81: 4-12
  19. Ito, S., M. Kinta, and S. Inuoe. 1980. Growth of yeast on nalkanes: Inhibition by a lactonic sophorolipid produced by Torulopsis bombicola. Agric. Biol. Chem. 44: 2221-2223 https://doi.org/10.1271/bbb1961.44.2221
  20. Sim, L., O. P. Ward, and Z.-Y. Li. 1997. Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microb. Biotech. 19: 232-238 https://doi.org/10.1038/sj.jim.2900450
  21. Lee, B. S., Y. B. Kim, and E. K. Kim. 2002. Characteristics of sophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol. 12: 235-241
  22. Baek, S.-H., X.-X. Sun, Y.-J. Lee, S.-Y. Wang, K.-N. Han, J.-K. Choi, J.-H. Noh, and E. K. Kim. 2003. Mitigation of harmful algal blooms by sophorolipid. J. Microbiol. Biotechnol. 13: 651-659
  23. Nakamura, Y., C. Asada, and T. Sawada. 2003. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioprocess. Eng. 8: 37-44 https://doi.org/10.1007/BF02932896
  24. Shcherbakova, V. A., K. S. Laurinavichius, and V. K. Akimenko. 1999. Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere 39: 1861-1870 https://doi.org/10.1016/S0045-6535(99)00081-8