Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 8 Issue 11
- /
- Pages.1496-1509
- /
- 2005
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier
투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템
- Published : 2005.11.01
Abstract
In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed
본 논문에서는 투영면 컨벌루션과 결정트리 분류기법을 사용하여 주변 환경이 복잡한 차량영상으로부터 실시간으로 번호판을 추출하고 인식하는 적응적 차량번호판 인식 시스템을 제안하였다. 일반적으로 고속도로 톨게이트와 주차장 출입구에서의 차량영상은 설치 카메라와 도로 환경에 따라 차량번호판의 크기, 각도변화, 주변잡음 등으로 매우 다양하므로 번호판 추출과 분할이 어렵다. 따라서 본 논문에서는 차량 영상을 획득한 후 번호판 후보영역을 검출하고 진입 위치 변화에 따라 번호판의 기울기와 크기를 자동으로 보정하여 인식하는 알고리즘을 제안하였다. 제안한 인식 방법은 차량의 에지누적 분포와 번호판의 일정한 명암값 변화 빈도수를 누적한 투영면 컨벌루션과 체인코드를 사용하여 크기와 기울기가 일정하지 않은 번호판으로부터 번호판영역을 정확히 추출하고, 적응적 이진화 기법을 이용하여 문자를 분할하였다. 본 논문에서 제안한 방법으로써 실험한 결과 복잡한 영상에서 전방 및 후방 차량영상으로부터 번호판 인식이 가능하였으며 각각
Keywords