DOI QR코드

DOI QR Code

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun (Department of Biology, Pusan National University) ;
  • Kim Tae-Yun (Department of Biology, Pusan National University) ;
  • Hong Jung-Hee (Department of Biology, Pusan National University)
  • Published : 2005.12.01

Abstract

Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.

Keywords

References

  1. Leyva, A., J. A. Jarillo, J. Salinas and J. M. Martinez-Zapater, 1995, Low temperature induces the acclimation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner, Plant Physiol., 108, 39-46 https://doi.org/10.1104/pp.108.1.39
  2. Gould, K. S., K. R. Markham, R. H. Smith and J. J. Goris, 2000, Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn., J. Exp. Bot., 51, 1107-1115 https://doi.org/10.1093/jexbot/51.347.1107
  3. Burger, J. and G. E. Edwards, 1996, Photosynthetic efficiency, and photodamage by UV and visible radiation in red versus green leaf Coleus varieties, Plant Cell Physiol., 37, 395-399 https://doi.org/10.1093/oxfordjournals.pcp.a028959
  4. Steyn, W. J., S. J. E. Wand, D. M. Holcroft and G. Jacob, 2002, Anthocyanins in vegetative tissues : A proposed unified function in photoprotection, New Phytol., 155, 349-361 https://doi.org/10.1046/j.1469-8137.2002.00482.x
  5. Kaliamoorthy, S. and A. S. Rao, 1994, Effect of salinity on anthocyanin accumulation in the root of maize, Ind. J. Plant Physiol., 37, 169-170
  6. Chalker-Scott, L., 1999, Environmental significance of anthocyanins in plant stress responses, Phytochem. Phytobiol., 70, 1-9 https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
  7. Krol, M., G. R. Gray, V. M. Hurry, G. Oquist, L. Malek and N. P. A. Huner, 1995, Low-temperature stress and photoperiod after an increased tolerance to photoinhibition in Pinus banksiana seedlings, Can. J. Bot., 73, 1119-1127
  8. Leng, P., H. Itamura, H. Yamamura and X. M. Deng, 2000, Anthocyanin accumulation in apple and peach shoots during cold acclimation, Sci. Hort., 83, 43-50 https://doi.org/10.1016/S0304-4238(99)00065-5
  9. Oren-Shamir, M. and A. Levi-Nissim, 1997, Temperature effects on the leaf pigmentation of Continus coggygria 'Royal Purple', J. Hort. Sci., 72, 425-432
  10. Christie, P. J., M. R. Alfenito and V. Walbot, 1994, Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways : Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings, Planta, 194, 541-549 https://doi.org/10.1007/BF00714468
  11. Shvarz, M., A. Borochov and D. Weiss, 1997, Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression, Physiol. Plant., 99, 67-72 https://doi.org/10.1111/j.1399-3054.1997.tb03432.x
  12. Close, D. C., C. L. Beadle, P. H. Brown and G. K. Holz, 2000, Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) Maiden and Eucalyptus globulus Labill, Trees, 15, 32-41 https://doi.org/10.1007/s004680000070
  13. McKown, R., G. Kuroki, G. and G. Warren, 1996, Cold responses of Arabidopsis mutants Impaired in freezing tolerance, T. Exp. Bot., 47, 1919-1925 https://doi.org/10.1093/jxb/47.12.1919
  14. Knox, G. W., 1989, Water use and average growth index of five species of container grown woody landscape plants, J. Environ. Hort., 7, 136-139
  15. Graham, D. and B. D. Patterson, 1982, Responses of plants to low, non-freezing temperatures : Proteins, metabolism and acclimation, Annu. Rev. Plant Rhysiol., 33, 347-372 https://doi.org/10.1146/annurev.pp.33.060182.002023
  16. Parra, C., J. Suez, H. Perez, M. Alberdi, M. Delseny, E. Hubert and L. Meza-Basso, 1990, Cold resistance in rapeseed (Brassica napus) seedlings, Searching biochemical markers of cold-tolerance, Arch. Biol. Med. Exp., 23, 187-194
  17. Mol, J., G. Jenkins, E. Schafer and D. Weiss, 1996, Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis, Crit. Rev. Plant Sci., 15, 527-557
  18. Sakamoto, K., I. Kumiko, K, Sawamura, H. Kyoko, A. Yoshihisa, Y. Takafumi and F. Tsutomu, 1994, Anthocyanin production in cultered cells of Aralia cordata Thumb., Plant Cell Tissue Organ Cult., 36, 21-26 https://doi.org/10.1007/BF00048311
  19. Deikman, J. and P. E. Hammer, 1995, Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana, Plant Physiol., 108, 47-57 https://doi.org/10.1104/pp.108.1.47
  20. Ronchi, A., G. Farina, F. Gozzo and C. Tonelli, 1997, Effects of triazolic fungicide on maize plant metabolism : Modifications of transcript abundance in resistance-related pathways, Plant Sci., 130, 51-62 https://doi.org/10.1016/S0168-9452(97)00190-8
  21. Fambrini, M., C. Pugliesi, P. Vernieri, G. Guiliano and S. Baronceli, 1993, Characterization of sunflower (Helianthus annuus L.) mutant, deficient in carotenoid synthesis and abscisic acid content, induced by in-vitro tissue culture, Theor. Appl. Genet., 87, 65-69
  22. Giraudat, J., F. Parcy, N. Bertauche, F. Gosti, J. Leung, P. C. Morris, M. Bouvier-Durand and V. Vartanian, 1994, Current advances in abscisic acid action and signalling, Plant Mol. Biol., 26, 1557-1577 https://doi.org/10.1007/BF00016490
  23. Francis, J. P., 1982, Analysis of anthocyanin. In P. Markakis (ed.), Anthocyanin as Food Colors, Academic Press, London, pp. 181-208
  24. Arnon, D., 1949, Copper enzymes in isolated chloroplasts : Polyphenol oxidase in Beta vulgaris, Plant Physiol., 24, 1-15 https://doi.org/10.1104/pp.24.1.1
  25. Khan, N. U. and C. S. Vaidyanathan, 1986, A new simple spectrophotometric assay of phenylalanine ammonia-lyase, Curr. Sci., 55, 391-393
  26. Gould, K. S. and B. D. Quinn, 1999, Do anthocyanins protect leaves of New Zealand native species from UV-B?, New Zealand J. Bot., 37, 175-178 https://doi.org/10.1080/0028825X.1999.10512176
  27. Choinski, J. S. Jr. and R. R. Wise, 1999, Leaf growth and development in relation to gas exchange in Quercus rnarilandica Muenchh, J. Plant Physiol., 154, 302-309 https://doi.org/10.1016/S0176-1617(99)80172-2
  28. Gould, K. S., K. R. Markham, R. H. Smith and J. J. Goris, 2000, Functional role of anthocyanin in the leaves of Quintinia serrata A. Cunn., J. Exp. Bot., 51, 1107-1115 https://doi.org/10.1093/jexbot/51.347.1107
  29. Woodson, W. R., K. Y. Park, A. Drory, P. B. Larsen and H. Wang, 1992, Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers, Plant Physiol., 99, 526-532 https://doi.org/10.1104/pp.99.2.526
  30. Ten Have, A. and E. J. Woltering, 1997, Ethylene biosynthetic genes are differentially expressed during carnation(Dianthus caryophyllus L.) flower senescence, Plant Mol. Biol., 34, 89-97 https://doi.org/10.1023/A:1005894703444
  31. Hahlbrock, K. and D. Scheel, 1989, Physiology and molecular biology of phenylpropanoid metabolism, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 347-369 https://doi.org/10.1146/annurev.pp.40.060189.002023
  32. Kubashek, W. L., B. W. Shirley, A. McKillop, H. M. Goodman, W. R. Briggs and F. M. Ausubel, 1992, Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings, The Plant Cell, 4, 1229-1236 https://doi.org/10.2307/3869409
  33. Sigh, A., M. T. Selvi and R. Sharma, 1999, Sunlight-induced anthocyanin pigmentation in maize vegetative tissues, J. Exp. Bot., 50, 1619-1625 https://doi.org/10.1093/jexbot/50.339.1619
  34. Sachray, L. S., D. Weiss, M. Reuveni, A. Nissim-Levi and M. O. Shamir, 2002, Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment, Physiol. Plant., 114, 559-565 https://doi.org/10.1034/j.1399-3054.2002.1140408.x
  35. Shichijo, C., T. Hamada, M. Hiraoka, C. B. Johnson and T. Hashimoto, 1993, Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period, Planta, 191, 238-245 https://doi.org/10.1007/BF00199755
  36. Faragher, J. D., 1983, Temperature regulation of anthocyanin accumulation in apple skin, J. Exp. Bot., 34, 1291-1298 https://doi.org/10.1093/jxb/34.10.1291
  37. Biran, I. and A. H. Halevy, 1974, Effect of varying light intensities and temperature treatments applied to whole plants, or locally to leaves or flower buds, or growth and pigmentation of 'Bacara' roses, Physiol. Plant., 31, 175-179 https://doi.org/10.1111/j.1399-3054.1974.tb03686.x
  38. Yamaguchi, F., M. Nozue, H. Yasuda and H. Kubo, 2000, Effects of temperature on the pattern of anthocyanin accumulation in seedlings of Polygonum cuspidatum, J. Plant Res., 113, 71-77 https://doi.org/10.1007/PL00013918
  39. Gong, M., Y. J. Li and S. Z. Chen, 1998, Abscisic acid-induced thermo- tolerance in maize seedlings is mediated by calcium and associated with antioxidant systems, J. Plant Physiol., 153, 488-496 https://doi.org/10.1016/S0176-1617(98)80179-X
  40. Kadlecova, Z., M. Faltus and I. Prasil, 2000, Relationship between abscisic acid content, dry weight and freezing tolerance in barley cv. Lunet, J. Plant Physiol., 157, 291-297 https://doi.org/10.1016/S0176-1617(00)80050-4
  41. Bray, E. A., 1991, Wild-type levels of abscisic acid are required for heat shock protein accumulation in tomato, Plant Physiol., 97, 817-820 https://doi.org/10.1104/pp.97.2.817
  42. Smith, B. P. C., M. Kapoor and J. D. Bewley, 1988, Exogenous application of abscisic acid or triadimefon affects the recovery of Zea mays seedlings from heat shock, Physiol. Plant, 73, 27-30 https://doi.org/10.1111/j.1399-3054.1988.tb09188.x
  43. Robertson, A. J., M. Ishikawa, L. V. Gusta and L. MacKenzie, 1994, Abscisic acid-induced heat tolerance in Bromus inermis Leyss cell-suspension cultures, Plant Physiol., 105, 181-190 https://doi.org/10.1104/pp.105.1.181
  44. Chandler, P. M. and M. Robertson, 1994, Gene expression regulated by absc- isic acid and its relation to stress tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 45, 113-141 https://doi.org/10.1146/annurev.pp.45.060194.000553