Abstract
A new algorithm for speech signal segmentation is proposed. This algorithm is based on finding successive similar frames belonging to a segment and represents it by an average spectrum. The speech signal is a slowly time varying signal in the sense that, when examined over a sufficiently short period of time (between 10 and 100 ms), its characteristics are fairly stationary. Generally this approach is based on finding these fairly stationary periods. Advantages of the. algorithm are accurate border decision of segments and simple computation. The automatic segmentations using frame averaging show as much as $82.20\%$ coincided with manually verified segmentation of CMU ARCTIC corpus within time range 16 ms. More than $90\%$ segment boundaries are coincided within a range of 32 ms. Also it can be combined with many types of automatic segmentations (HMM based, acoustic cues or feature based etc.).