돼지 동결 난포란과 이를 이용한 핵이식 배의 체외발생에 관한 연구

Developmental Rate of Vitrified Porcine Oocytes and Its Application to NT Embryos Constructed by Microinjection of Fibroblast Cells into Vitrified Oocytes

  • 이명헌 (국립수의과학검역원) ;
  • 이봉구 (중부대학교 애완동물자원학과) ;
  • 김상근 (충남대학교 수의과대학)
  • Lee, M.-H (National Veterinary Research & Quarantine) ;
  • Lee, B.-K (Dept. of Pet Animal Sci., Joongbu University) ;
  • Kim, S.-K (College of Veterinay Medicine, Chungnam National University)
  • 발행 : 2005.12.01

초록

본 연구는 돼지 난포란의 동결보존 후 생존성과 난자의 활성화 처리에 따른 체외발생율과 이를 이용한 핵 이식배의 체외발생율을 조사하였다. 활성화 처리된 배는 $5\%$ FBS가 첨가된 NCSU 23 배양액으로 $38.5^{\circ}C$, $5\%\;CO_2$$95\%$ air의 조건으로 배양하였다. 1. 난포란을 EDS와 $5\%$ PVP로 동결 후 $10\%$ FBS가 첨가된 NCSU 23 배양액으로 $0{\~}10$시간 배양했을 때 체외발생율은 $36.0\%$로서 대조군인 비동결 난포란의 체외발생율 $46.0\%$에 비해 낮았다. 2. Ethanol과 cyclojexamide로 처리 후 42 및 46시간 배양한 배의 분할율은 각각 $33.3\%$, $36.0\%$$27.1\%$, $30.0\%$로서 대조군의 $8.8\%$, $11.4\%$에 비해 높게 나타났다. 3. 동결 및 비동결 난포란을 이용한 핵이식 배의 융합율과 발생율 간에는 유의한 차이가 없었다. 4. Ethanol과 cyclojexamide로 활성화 처리한 난자를 이용하여 재구축한 핵 이식배의 발생율은 $2.8\%$, $5.3\%$$1.5\%$, $2.9\%$로서 대조군의 $0.0\%$, $0.0\%$에 비해 높은 발생율을 나타냈다.

키워드

참고문헌

  1. Adenot PG, Szollosi MS, Chesne P, Chastant S and Renard JP. 1997. In vivo aging of oocytes influences the behavior of nuclei transferred to enucleated rabbit oocytes. Mol. Reprod. Dev., 46:325-336 https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<325::AID-MRD11>3.0.CO;2-Y
  2. Atabay EC, Takahashi Y, Katagiri S, Nagano M, Koga A and Kanai Y. 2004. Vitrification of bovine oocytes and its application to intergeneric somatic cell nucleus transfer. Theriogenology, 61(1):15-23 https://doi.org/10.1016/S0093-691X(03)00179-1
  3. Barnes FL, Endebrock M, Looney C, Powell R, Westhusin M and Bondioli K. 1993. Embryo cloning in cattle: the use of in vitro matured oocytes. J. Reprod. Fertil., 97:317-320 https://doi.org/10.1530/jrf.0.0970317
  4. Bordignon, V and Smith LC. 1998. Telophase enucleation: an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol. Reprod. Dev.,49:29-36 https://doi.org/10.1002/(SICI)1098-2795(199801)49:1<29::AID-MRD4>3.0.CO;2-Q
  5. Bos-Mikich A, Wood MJ, Candyand CJ, Whittingham DG. 1995. Cytogenetical analysis and developmental potential of vitrified mouse oocytes. Biol. Reprod., 53:780-785 https://doi.org/10.1095/biolreprod53.4.780
  6. Candy C, Wood M, Whittingham DG, Merriman JA and Choudhury N. 1994. Cryopreservation of immature mouse oocytes. Hum. Reprod., 9: 1738-1742 https://doi.org/10.1093/oxfordjournals.humrep.a138785
  7. Cuello C, Sntonia MG, Parrilla I, Tornel J, Vazquez JM, Roca J, Berthelot F, Martinat-Botte F and Martinez EA. 2004. Vitrification of porcine embryos at various development stages using different ultra-rap is cooling procedures. Theriogenology, 62:353-361 https://doi.org/10.1016/j.theriogenology.2003.10.007
  8. Cuthbertson KSR, Whittingham DG and Cobbold PH. 1981. Free $Ca^{2+}$ increases in exponential phases during mouse oocyte activation. Nature, 294:754-757 https://doi.org/10.1038/294754a0
  9. Dinnyes A, Dai Y, Jiang S and Yang X. 2000. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic nuclear transfer. Biol. Reprod., 63:513-518 https://doi.org/10.1095/biolreprod63.2.513
  10. Ducibella, T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S and Ozil JP. 2002. Egg-to-embryo transition is driven by differential responses to $Ca^{2+}$ oscillation number. Dev. Biol., 250:280-291 https://doi.org/10.1006/dbio.2002.0788
  11. Grupen CG, Nottle MB and Nagashima H. 2002. Ca release at fertilization : artificially mimicking the oocytes response to sperm. J. Reprod. Dev., 48:313-333 https://doi.org/10.1262/jrd.48.313
  12. Ikumi S, Asada M, Sawai K and Fukui Y. 2003. Effect of activation methods for bovine oocytes after intracytoplasmic injection. J. Reprod. Dev., 49:37-43 https://doi.org/10.1262/jrd.49.37
  13. Jellerette T,. Wu CLHeH, Parys JB and Fissore RA. 2000. Down-regulation of the inositol 1,4,5-triphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev. Biol., 223:238-250 https://doi.org/10.1006/dbio.2000.9675
  14. Kasai M, Komi JH, Takakamo A, Tssnoda H, Sakurai T and Machida T. 1990. A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J. Reprod. Fertil., 89:91-97 https://doi.org/10.1530/jrf.0.0890091
  15. Kikuchi K, Izaike Y, Noguchi J, Furukawa T, Daen EP, Naito K and Toyoda Y. 1995. Decrease of histone H1 kinase activity in relation to parthenogenetic activation of pig follicular oocytes matured and aged in vitro. J. Reprod. Fertil. 105:325-330 https://doi.org/10.1530/jrf.0.1050325
  16. Kline D and Kline JT. 1992. Repetitive calcium transients and the role of Ca in exocytosis and cell cycle activation in the mouse egg. Dev. Bio., 1149:80-89
  17. Kubota C, Yang X, Dinnyes A, Todoroki J, Yamakuchi H and Mizoshita K. 1998. In vitro and in vivo survival of frozen thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Mol. Reprod. Dev., 51: 281-286 https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<281::AID-MRD7>3.0.CO;2-L
  18. Leibo SP and Oda K. 1993. High survival of mouse zygote and embryos cooled rapidly or slowly in ethylene glycol plus polyvinylpyrrolidone. Cryo-Letters, 14:133-144
  19. Loi S, Ledda J, Jr. Fulka, Cappai P and Moor RM. 1998. Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod., 58:1177-1187 https://doi.org/10.1095/biolreprod58.5.1177
  20. Martino A, Songsasen Nand Leibo SP. 1996. Development into blastocyst of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod., 54:1059-1069 https://doi.org/10.1095/biolreprod54.5.1059
  21. Mazur P. 1972. Cryobiology; the freezing of biological systems. Sci. Washington D.C. 168:939-949 https://doi.org/10.1126/science.168.3934.939
  22. Nakada K and Mizuno J. 1998. Intracellular calcium responses in bovine oocytes induced by spermatozoa and by reagents. Theriogenology, 50:269-282 https://doi.org/10.1016/S0093-691X(98)00135-6
  23. Presicce GA and Yang X. 1994. Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol. Reprod. Dev., 37:61-68 https://doi.org/10.1002/mrd.1080370109
  24. Quan JH, Wang AG and Kim SK. 2005. Effects of EGF, ${beta}$-ME, glucose, $O_2$ concentrations and fibroblasts substrate on the development pf porcine NT embryos. Korean J. Emb. Trans., 20(2) :147-156
  25. Rall WF and Wood MJ. 1994. High in vitro and in vivo survival of day 3 mouse embryos vitrified or frozen in a non-toxic solution of glycerol and albumin. J. Reprod. Fertil., 101:681-688 https://doi.org/10.1530/jrf.0.1010681
  26. Renard JP, Nguyen BX and Gamier V. 1984. Two-step freezing of two-cell rabbit embryos after partial dehydration at room temperature. J. Reprod. Fert., 71:573-580 https://doi.org/10.1530/jrf.0.0710573
  27. Robinski B, Arav A and Devires AL. 1991. Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo-Lettters, 12: 93-106
  28. Saunders KM and Parks JE. 1999. Effects of cryopreservation procedures on the cytology and fertilization rate of in vitro matured bovine oocytes. Biol. Reprod., 61:178-187 https://doi.org/10.1095/biolreprod61.1.178
  29. Soloy E, Kanka J, Viuff D, Smith SD, Callesen H and Greve T. 1997. Time course of pronuclear deoxyribonucleic acid synthesis in parthenogenetically activated bovine oocytes. Biol. Reprod., 57:27-35 https://doi.org/10.1095/biolreprod57.1.27
  30. Susko-Parrish JL, Leibfried-Rutledge ML, Northey DL, Schutzkus V and FirstL NL. 1994. Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. Biol., 166:729-739 https://doi.org/10.1006/dbio.1994.1351
  31. Takahashi Y and First NL. 1992. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology, 37:963-978 https://doi.org/10.1016/0093-691X(92)90096-A
  32. Toth TL, Jones HW, Baka SC, Muasher S, Veeck LL and Lanzendorf SE. 1994. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil. Steril., 61:891-894 https://doi.org/10.1016/S0015-0282(16)56702-8
  33. Vajta G, Rindom N, Peura TT, Holm P, Greve T and Callesen H. 1999. The effect of media, serum and temperature on in vitro survival of bovine blastocysts after open pulled straw vitrification. Theriogenology, 52:939-948 https://doi.org/10.1016/S0093-691X(99)00184-3
  34. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen A, Greve T and Callesen H. Open pulled straw(OPS) vitrification : a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev., 51:53-58 https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
  35. van Blerkom J. 1989. Maturation at high frequency of germinal vesicle-stage mouse oocyte after cryopreservation : alterations in cytoplasmic, nuclear, nucleolar and chromosomal structure and organization associated with vitrification. Human. Rerpod., 4:883-898 https://doi.org/10.1093/oxfordjournals.humrep.a137006
  36. van der Elst JC, Nerinckx SS and van Steirteghem AC. 1993. Slow and ultrarapid freezing of fully grown germinal vesicle-stage mouse oocytes: optimization of survival rate outweighted by defective blastocyst formation. J. Assist. Reprod. Gene, 10:202-212 https://doi.org/10.1007/BF01239222
  37. Vitullo AD and Ozil JP. 1992. Repetitive calcium stimuli drive meiotic resumption and pronuclear development during mouse oocyte activation. Dev. Biol., 151:128-136 https://doi.org/10.1016/0012-1606(92)90220-B
  38. Wakayama T, Perry ACF, Zuccotti M, Johnson KR and Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  39. Wu B, Ignotz G, Curie WB and Yang X. 1997. Dynamics of maturation-promoting factor and its constituent proteins during in vitro maturation of bovine oocytes. Biol. Reprod., 56:253-259 https://doi.org/10.1095/biolreprod56.1.253