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Abstract The Interconnecting Highways problem is an abstract of many practical Layout Design problems in the
areas of VLSI design, the optical and wired network design, and the planning for the road constructions. For the road
constructions, the shortest-length road layouts that interconnect existing positions will provide many more economic
benefits than others. That is, finding new road layouts to interconnect existing roads and cities over a wide area is
an important issue. This paper addresses an approximation scheme that finds near optimal road layouts for the
Interconnecting Highways problem which is NP-hard. As long as computational resources are provided, the near
optimality can be acquired asymptotically. This implies that the result of the scheme can be regarded as the optimal
solution for the problem in practice. While other approximation schemes can be made for the problem, this proposed
scheme provides a big merit that the algorithm designed by this scheme fits well to given problem instances.
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KeyWords : Approximation algorithm, Approximation ratio, Error allowance, Polynomial time, Dynamic programming,
PTAS(Polynomial Time Approximation Schemes)

1. Introduction

PTAS (Polynomial Time Approximation Scheme)
{1],[2] includes the idea of dividing given problem
instance to form a dynamic programming. Usually
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given problem instance is divided by rectangular
partitions.
solutions are guided to pass through given points,

During computations, approximate
named portals, on the perimeters of the rectangular

partitions.
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The PTAS for Interconnecting Highways Problem
has been presented in[3], but its rectangular
partitioning procedure requires a hard condition that
the portals of a rectangular partition should be
superimposed exactly with those of its upper level
partitions. The condition makes the portal locations
fixed and the density of portals high unnecessarily.
This paper proposes a new PTAS for the same
problem to introduce the idea of portal adjustment
that makes it possible to design a versatile dynarmic
programming which dispenses with the condition.

For a problem instance as in <Figure 1> where
the highway segments are located alongside a
diagonal of a square area, existing PTAS locates
portals in terms of the square enclosing the problem
instance, while new PTAS does in terms of the
smaller rectangle tightly enclosing it. Inside the
square of existing PTAS, the number of portals
along a perimeter of partitions must be power of 2
to meet the condition mentioned above. This makes
unnecessarily many portals that can bejt reduced by
new PTAS, increasing computation Li.rje.

existing PTAS new PTA$

<Figure 1> Two Computation Scopes

For the worst-case time complexity, the two

PTAS has roughly O(n%) time. But the worst case
happens rarely. Generally, for a given problem
instance, versatile partitioning is needed to design a
dynamic programming that fits well to given
problem instances.

Interconnecting Highways problem is related to
Euclidean Steiner minimum tree(ESMT)[4],(5] and
defined as follows from[6]. Interconnecting
Highways is to construct the roads of minimum
length to interconnect n existing highways

H,H,, - H, under the constraint that the roads
can intersect H, only at one point, called an exit
of Hx', in a designated interval I 1o avoid
unnecessary complexity, we assume that all I are

disjoint. In this paper, we consider the case that I;

is a line segment, including the two extreme cases
that I; is a point or a line. The case that I, is a

point for all { =1,2,-*,7 s the Steiner minimum
tree problem, which is NP-hard. Thus the problem
is also NP-hard(7],[8]. Following sections introduce
a new PTAS for the Interconnecting Highways
Problem.

The remainder of this paper is organized as
follows. Section? mentions what is the subject of
the minimization process in the approximation
scheme. Section 3 shows that the approximation
over the digitized problem instances gives the
desired result. In Section 4, the tools that are
required to perform the theorem proving are
presented. Section 5 shows that the proposed
scheme may result in a polynomial-time Dynamic
Programming. Section 6 is the proof of the Theorem
that shows that there exist the desired solutions
that can be found in a polynomial time. Section 7
concludes the paper with the comment on the key
point of the proposed idea.

2. The Objective Function

Our objective is to find the minimum-length road
for the problem, but we can not design a PTAS in
the way to minimize only the road_length. It will be
explained later. We should take the way to minimize
the total_length, which is the sum of the
road_length and segment_length. The road_length is
the sum of the lengths of all the roads and the
segment_length is that of all the highway segments.
APX is the abbreviation for Approximation and
OPT for Optimal.
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Proposition 1 Under the reasonable assumption that

Z segment _length < c- z road _ length ,p;

where c is a constant. The (1 +& 1) —approximation

for the total length implies (&) -approximation
for the road_length.

Proof :

total _length o = road _length yy + Y segment _length
<(+¢&,)-total _length,,,
=(1+g) (Z road _length,,, + Zsegment _length)
Zroad _length oy <(1+6,)- Zroad _length,p, + 6, - Zsegment_length

<+e -(1+e)- Zmad _length,,,
=(1+£,)-3 road _length,p; ]

3. Adjusting problem instances into grids

In order to run the program, the instance of our
problem should be adjusted into grids, the integer
Coordinates. In fact, the adjustment will move each
end point into the nearest grid point. In addition, we
assume that the crossing points between the roads,
which are actually the steiner points, lie only at the
grid points. We now show that the adjustment and
the assumption are acceptable.

Proposition 2 (1+&) -approximation over the Grid

instance implies (1+ €) -approximation over the
Original instance.

Optimal Graph Grid version

o Steiner point o Exit point

road

= adjusted highway segment

highway segment adjusted road

<Figure 2> Difference between the Optimal graph and
the Grid version

Proof : By the adjustment and assumption,

total _lengthr™ — total _lengthfra <2(3n-3)
_tenglippr PT

because the number of edges of this
tree structure is 3n - 3 . Note the maximum
number of points for the problem instance is
3n — 2 that is the sum of endpoints and steiner
points and both the end points of an edge can move

within the distance 1 each.
Likewise,

| total _lengthCiE™ —total _lengthny | <2n’

where #n° is the worst case number of edges
when the approximated-graph is a complete
network. This condition:

total _length f,',')‘: <(1+¢)-total _length g,’,i}j

will be shown to be satisfied by the PTAS and
then;

total_lengthe™ - 2n* <(1+¢£)- (total_lengt i 4 2(3n~3))

total_lengthi& < (1+ £)-total _lengthgpe™ +(1+£)-2(3n—3) +2n°

(et 1+&)-2(3n-3)+24>
total _lengthfrs!

(1+&)-2(3n-3)+ 24
n3

Y-total _lengthlpe™

=(l+&+ )-total _lengthone™

<(1+&)-total _lengthne™!

where € can be chosen accordingly. |

The role of the term #° is the key of this proof
and it is acquired by choosing the unit length of the
grid short enough. We may set is bigger than n
with the shorter unit length.

4. 1/3:2/3-tiling, portals and the Structure
Theorem

We call the tree that is composed of the segments
and roads together and satisfies the problem to be
total_tree. The network of total_tree plus the
additional roads for the approximation purpose is
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named a graph. Their length is called total_length.

In case that the total_tree inside the rectangle is
(1+ &) -approximation, we call the tree objective
total_tree . and the objective_graph is defined
analogously. A Steiner point is a crossing point of
the roads that holds the Steiner point properties.
We call highway segments as segments. We mean
a rectangle as an axis-aligned rectangle. The size of
the rectangle is the length of its long edge. The
bounding box of the problem instance is the
smallest rectangle enclosing them. A line-separator
of a rectangle is a straight line segment parallel to
its shorter edge that partitions it into two rectangles

1
of at least 3 rd the area. For example, if the
rectangle’s width W is greater than its height, then

a line-separator is any vertical line in the middle %
of the rectangle. The character m stands for the
number of portals on a line-separator. Now we
define a recursive partition of a rectangle, over
which the Dynamic program runs.

Definition 1 (1/3:2/3-tiling) A 1/3:2/3-tiling of
a rectangle R is a binary tree(a hierarchy) of
sub-rectangles of R. The rectangle R is at the root.
If the size of Ris <1 , then the hierarchy contains
nothing else. Otherwise the root contains a
line-separator for R, and has two sub-trees that are
1/3:2/3-tiling of the two rectangles, into which the
line-separator divides R.

<Figure 3> 1/3:2/3-tiling

Note that rectangles at depth d in the tiling form
a partition of the root rectangle. The set of all
rectangles at depth d+1 is a refinement of this
partition obtained by putting a line-separator

through each depth d rectangle of size>1 . The area
zd

of any depth d rectangle is at most 3 times the
total area. The following proposition is therefore
immediate.

Proposition 3 If a rectangle has width W and
height H, then its every 1/3:2/3-tiling has depth at
most log s W +log s H +2

Definition 2 (portals) A portal in a 1/3:2/3-tiling
is any point that lies on the edges of rectangles in
the tiling. If m is any positive integer then a set of
portals P is called m-regular for the tiling if there
are exactly m equidistant portals on the
line-separator of each rectangle of the tiling. We
assume that the end—points of the line-separator are
also portals. In other words the line-separator is
partitioned into exactly m-1 equal parts by the
portals on it.

Definition 3 (m-light) Let m € Z* and n be
the roads for the problem instance. Let S be a
1/3:2/3-tiling of the bounding box and P be an
m-regular set of portals on this tiling. Then the
total_tree with n is m-light with respect to S if the
followings are true: (i) in each rectangle of tiling
S, the roads crosses the line-separator of that
rectangle at most m times, (ii) the roads crosses
the line-separator only at portals in P.

line separator
N,
N
\
o portal = ---e-- roads — highway segrment

<Figure 4> m-light graph
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Theorem (Structure Theorem) The following is
true for each & > 0. Every set of highways in the

problem has a (1+¢) —approximate total_tree and

an associated 1/3:2/3-tiling of the bounding box

such that the roads are m-light for this tiling where

m=0 (log n)
£ .

5. The Polynomial Time Dynamic

Programming (DP)

By Proposition 2 and assuming that the Structure
Theorem is true, we can build the m-light
objective_graph up to the root of the tiling with the
DP. The Structure Theorem guarantees the

existence of (1+ &) —approximate m-light graphs

and tiling S, with respect to which the graphs are

_ n logn
m-light, where " ~ o( €

By Proposition 3,

the depth of any such tiling is at most O(log n)
We describe a simple DP that finds both S and 7 in

1
poly (n)2°("') = nO(z) time, for which the analysis
comes later.

The work of the DP is bottom-up approach, but it
is easy to view the procedure from the final stage
to the start, i. e. top-down way. The final result of
the DP is the rectangle, which is the bounding box
for the given problem instance, and which contains
the m-light objective_graph that satisfies the
problem.

Right before the final rectangle is formed, many
combinational cases must have been checked. All
the line-separators that could divide the final
rectangle into two sub-rectangles according to the
1/3:2/3-tiling are considered one by one. Along
such a line-separator, there are choices of portals
<Figure 5>. Then, for each choice of a line
—separator and a multi-set of portals, there are
choices of the inclusion/exclusion of the segments
for the two sub-rectangles <Figure 6>. Thus there

are many combinational cases as above and each of
them has its own minimum cost m-light graph.
m-light graph is the
concatenation of the two smaller m-light graphs

Such a minimum cost

from each of the sub-rectangles. So a rectangle
holds such minimum cost m-light graphs as many
as the number of the combinations.

chosen line separator
Sub-rectangles are computed

o portal earlier

« chosen point for interconnection

<Figure 5> Partitioning with a line~separation
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right rectangle

<Figure 6> Combinations in terms of keeping or
deleting segment

The same observations hold repeatedly in each of
the sub-rectangle for finding its m-light graphs
until the work reaches the bottom most rectangles
where there are limited number of segments and so
the brute—force algorithm could get the minimum
cost m-light graphs for each of the combinational
cases in the smallest rectangle.

Out of all the minimum cost m-light graphs from
all the cases of combinations in the final rectangle,
we choose the most minimum cost one(s), which is
the m-light objective_graphs, and call it the
approximated solution for the problem.

Now, we show the number of entries of the
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lookup table for this DP is polynomial and the run
time for each of the entries is poly time. An entry is
indexed by the triple: (a) a rectangle, (b) a multi-set

of ki (£4m) portals along the perimeter of the
rectangle, and (c) a set of the segments inside the
rectangle.
For (a), the number of distinct rectangles is at
23n-3)

most ( 4 J since  the maximum number of

points are 2(37 = 3) from the Proof of Proposition
2. For (b), Each rectangle has 4 sides, and is part of
the line-separator of some ancestor of the rectangle.
The m portals on the line-separator are evenly
spaced, so they are completely determined once we
know the line-separator. But the number of choices
for a line-separator is at most the number of pairs

n

of points, which is [2) This accounts for the

factor 0((n*)*) = 0(n*) . Once we have identified
the set of < 4m portals on the four sides, the

number of ways of choosing a muiti-set of ky out

of them is at most 2*™*% . For (c), the number of
the sets of the segments in the rectangle is limited
to polynomial by the bundling of segments into one
when more than m segments pass a line-separator
of the rectangle. So the maximum number of

segments passing the perimeter is < 4m and the

number of the sets is < 2*".

Hence we can upper bound the size of the lookup
table by

4m

zn4 x n8 x 24m+k, x 24m

hal
&

, which is 0(n22")=n"

Now we consider the running time over the
lockup table. The bottom level rectangles has

limited number of segments of O(m) and so run the

brute—force algorithm for each in 290 time. For

each of the upper level rectangles, we compute the

minimum value by the comparition between the
sub-rectangles, so the time is polynomial.
Therefore, the running time of the DP is upper
bounded by 2% x poly (n)x size of the table | which
is noWo.

In this DP, we can check all the m-light graphs
so that the (I+ &) -approximate graph shall be
found. The existence of (I + &) ~approximate graph
in any chosen rectangle is ensured by the Structure
Theorem.

6. Proof of the Structure Theorem

The Structure Theorem shows the existence of
the m-light objective_graph, which keeps itself
within the small error allowance from the imaginary
optimal total_tree. Once the existence of such a
m-light objective_graph is shown, the minimum
cost m-light graph is also within the error bound.
Finding the minimum cost m-light graph is the
DP’s share. The optimal total_tree mentioned in
this paper is the imaginary one.

Note that the m-light graphs does not have to
satisfy the properties that the optimal total_tree
should have. That is, the optimal total_tree should be
a Steiner tree, but the m-light graph does not have
to be. The final approximated-graph is normally
picked out from the m-light objective_graph in
polynomial time by the Spanning tree routine.

The proof of the Structure Theorem can be stated
as follows. For each rectangle over the 1/3:2/3-tiling
of the problem instance, we continue to choose a
line-separator that crosses with the edges of the
optimal total_tree less times than the others. Name
the points, at which the edges cross with the chosen
line—separator to be target_points. Then the m-light
graph whose edges and points cross at the nearest
portals from the target_points will be shown to be
within the expected approximation bound.

The analytic sum of the lengths between the
target_points and the nearest portals through which
the parts of the m-light structure pass is used for
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the estimation of the length difference between the
optimal structure and the m-light structure. The
length difference will be compared with the
minimum estimation of the optimal structure’s
length, which is measured with the use of Lemma 1.
Let a unit_band in a rectangle be the sub-rectangle
with the unit length of width and the height of
length up to L, a side of the rectangle.q

| |
T AT

—— line separator

highway segment ---- road

<Figure 7> Six unit bands in the middie

Lemma 1 When a line-separator inside the
unit_band crosses with the roads and segments

k(e NU{0}) times, the total _length 57 minimum

k
in the unit_band is 7 .

Proof : For a crossing, the length of the corresponding
edge or segment is the shortest when the edge stops

k
at the line-separator and it is 2 2 of the unit length.

k
So, the minimum cost in the unit_band is 3.

For each rectangle over the 1/3:2/3-titling, we

1
choose only one line-separator, in the middie 3 area

of it, that crosses with the optimal total_tree k times.
The other line-separators in the area cross at least k
times. If & = 0, the case will tun out to be

. . . Grid
simple. As a result, the minimum fofal _lengthyy]

1 k
2

in the middle 3 area could be estimated as L

L
3
Over the chosen line-separators above, we may
build up a m-light graph, which will be shown to

have the approximation ratio of {1 +¢&). Name such

a m-light graph as a close graph. The minimum

length m-light graphs which has less or equal
length than the close graph will be found by the DP.

Proof: (Structure Theorem) We are going to figure
out how much more length the close graph has than
the optimal total_tree does. There are two cases to
be considered because the number of the crossings
between the optimal total_tree and the line-separator
could be more than m or not, and they should be
observed separately.

. —

CASE1 CASEIl

* Steiner point o portal e optimal road

—— highway segment new road to pass portals

<Figure 8> Two case

Case 1 For a rectangle, there is a line—separator,
which is crossed by the optimal total_tree k(<m)
times where k is the minimum number of the

crossings that a line-separator in the rectangle may

have.

Case II For a rectangle, all the line-separators
cross with the optimal total_tree more than m times.
For Case I, the maximum length difference
between the optimal total_tree and the close graph

L
in a rectangle is 3k'(;) because all the crossing
points of the close graph at the portals can be
Steiner points of degree 3 and each of them may

L
have a distance of up to 3, to the nearest
target_points.
So, the ratio of the length difference to

Grid
total _length gpr in the rectangle is:
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= — _nlogn
. We may let m=0(

)

& SO
that the ratioc of the close graph’s length to the

18 n
optimal total_tree’s is <@+ 7) =Q1+é)

For Case 1II, the estimated minimum

total _lengthgyt in the %area of a rectangle is
m 1,
2 3" since k =m .

Because the density of the edges in this case is
high, we may add two bridges of length L to form
the close graph instead of considering the details of
the crossings, which might cause exponential time
complexity.

The bridge is a part of the roads and a straight
line, with which the other parts of the roads,
segments and Steiner points of the close graph may
touch, and which lies parallely and tightly close to
—but not touching — the line-separator on both of
its sides. But the two bridges may be connected
each other through the portal by infinitesimally
short line segments whose lengths are ignored. So,

the ratio of the Ilength difference to the
2L 12

total _lengthgyy in the rectangle is: 5 ;—L ",

As a result, the length difference from the two
18

cases is at most 7. Since the tiling has depth of

O(log n) | the approximation ratio is

1
18 m(;O(logn)) -

a +%)"<“’8"’ =(1+—) e?@ <(1+¢)
m .

We may describe the works of the DP in view of
Case I and Case II stated above so as to see the
relationship between the proof and the DP’'s works.
Case I is usually for the bottom and lower level
rectangles because the numbers of the segments in
them are small and so the number of crossings
through a line-separator would usually be < m . But
m should be a large number to take all the cases of
the optimal structure passing the line-separator.

Case II would be for the upper level rectangles.

For Case I where two rectangles are combined
and the line-separator between them is crossed no
more than m times, generally, the crossings at the
portal of the small rectangles are moved to the
nearest portals of the bigger rectangles, and further,
more than one crossings from the small rectangle
may move to one nearest portal of the bigger
rectangle if the inter-portal distance of the bigger
rectangle is more than twice longer than that of the
smaller one.

However, actually the portals(crossings) of the
smaller rectangle do not move the distance literally,
but a short-bridge (a line segment) is added to
connect the crossings (portals) to the nearest portal
of the bigger rectangle. As many short-bridge as
the number of the crossings are added tightly close
to the line-separator from the locations of the small
rectangle’s portals (crossings) to the bigger
rectangle’s. At the same time, the portals of the
small rectangle are removed and the crossings are
changed to touching with the corresponding
short-bridge. Because the short-bridge and portals
are mathematical lines and points, we may put them
tightly close each other, but some adjustment at the
final stage to separate them reasonably within the
error allowance could be done if needed. The
Structure Theorem is proved in such a view of the
DP’s work, which is clearly polynomial time.

Case @I happens when two rectangles are
combined, the line-separator between them is the
concatenation of the two short-line-separators (, or
two sides) of the lower level rectangles and the sum
of the numbers of crossings from the two
short-line-separators is more than m. Then bridges
are used to deal with the excessive crossings. As
explained in the proof of the Structure Theorem, the
bridges are straight lines, which lie parallely and
tightly close to — but not touching — the
line-separator on both of its sides. All the crossings
at the two short-line-separators are changed to
touching with the bridges, removing themselves.
Then the graph in the upper rectangle is likely to be
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a network.

The roads that crossed the portals in the smaller
rectangles are not the crossings at the upper
rectangle anymore. Instead, they remain touched
with the bridge and the bridge will have the
crossings through the portals no more than m
times. But the bridges and the segments are just
connected if they cross, probably violating the
constraint that the roads can intersect a segment
only at one point where bridges are parts of the
roads. The violation will be recovered by the
Spanning Tree procedure that follows the DP.

The two bridges on both sides of the
line-separator are connected by infinitesimally small
line segments through the portals, and actually in
that case only one portal could he used for the
crossing. This is how the DP forms the m-light
graphs.

It is mentioned in the introduction that we can
not design a PTAS in the way to minimize only the
road_length and now it can be explained. We noted

k1
that the minimum 0%l _length opr is 5 3L and it is

needed to show that the ratio of the length increase
is relatively small. That is, the minimum

total _length 57 should be big enough relative to the
length increase. But, if we consider only the
road_length then the minimum fotal _length 57 can
be almost zero, resulting that the ratio gets big
unboundedly. Note that the number of portals, m, on
a line-separator is supposed to be reasonably big
enough to cover every possible cases of crossings.
If m is a small number and the intersections on the
line-separator is too many, we can not apply the
Structure Theorem, i. e. many steiner points can not
cross neighboring segments.

7. Conclusion
In the proof of Structure Theorem, it is shown

that the amount of added lengths of roads at each
partition is less than or equal to an allowance so

that the total sum of the difference to the optimal
solution can not be greater than the small amount,

£, resulting in (1+ &) ~approximation. In new PTAS,
the locations of portals neither affect nor depend on
the way of partitioning the problem instance. Just
choosing the proper number of portals along the
perimeter of a partition according to the problem
instance satisfies the requirement.

This paper mentions the importance of locating
portals by showing a new PTAS. It shows that the
difference to the optimal solution incurred by
passing through a portal at a level of partitioning is
within the allowance as well as the differences at
the upper levels are. This property can be applied to
the design of approximation algorithms for similar
problems whose solutions may have an allowance,
like € , for the difference to the optimal solutions.
The point is that the allowance dispenses with the

conditions to fix the locations of portals.
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