알칼리/알칼리토금속 양이온을 치환한 Y형 및 ZSM-5 제올라이트의 NO 흡착 특성

Adsorption Characteristics of Nitrogen Monoxide on Y-type and ZSM-5 Zeolites Exchanged with Alkali/Alkaline-earth Metal Cation

  • 김철현 (안동정보대학 가스산업과) ;
  • 이창섭 (계명대학교 자연대 화학과)
  • 투고 : 2005.10.21
  • 심사 : 2005.11.14
  • 발행 : 2005.12.10

초록

탈알루미늄 및 알칼리/알칼리토금속 양이온으로 치환한 Y형 및 ZSM-5 제올라이트 촉매를 제조하였다. 전처리 후 Y형 및 ZSM-5 제올라이트의 Si/Al비는 증가하였고, bulk보다는 표면에서의 Si/Al비가 더 큰 것을 알 수 있었다. 전처리에 의해 제조된 Y형 및 ZSM-5 제올라이트의 골격구조 파괴는 주로 탈알루미늄 처리과정에서 Al 이온의 탈리에 의한 것이며, framework이 감소하고 non-framework이 증가하였다. 이러한 현상은 스팀처리 시간이 많아질수록 증가하였고, 양이온으로 치환함에 따라 더욱 심화되었음을 알 수 있었다. NO-TPD 실험결과, 전처리된 Y형 및 ZSM-5 제올라이트는 탈착봉우리가 저온으로 이동하였다. 또한 스팀처리 시간이 많은 촉매물질일수록 탈착온도가 더 낮은 온도로 이동하였다. 촉매의 활성은 치환된 양이온, Si/Al 함량비 및 탈알루미늄으로 변화된 골격구조에서 framework과 non-framework의 비율에 의존하였다.

Dealuminated and alkali/alkaline-earth metal exchanged Y-type and ZSM-5 zeolites were prepared as catalytic materials. Comparing with the composition of starting material, the magnitude of Si/Al ratio was increased after dealumination and cation exchange process. The ratio of Si/Al on surface was appeared to be larger than that in bulk. The destruction of basic frame in catalysts observed was understood to be due to a detachment of aluminum, which results in reducing framework while increasing non-framework. This phenomenon becomes more serious with increasing time of steam treatment and even more significant for the cation exchanged catalysts. The desorption peaks of the NO-TPD profiles taken after dealumination and cation exchanged Y-type and ZSM-5 zeolites shifted to the low temperature region. It was also found that the longer the steam treatment time, the degree of shift toward low temperature region was increased. The catalytic activities are dependent on the nature of cation exchanged, the ratio of Si/Al and the ratio of framework/non-framework by a change in basic frame.

키워드

과제정보

연구 과제 주관 기관 : 한국산업기술재단

참고문헌

  1. D. J. Kim, B. C. Kwon, D. H. Kim, and W. K. Park, Tnternal Combustion Engine, 345, Munundang, Seoul (2001)
  2. E. Smulders, IEEE Trans. on Plasma Science, 26, 5 (1998)
  3. H. Mahzoul, J. F. Brilhac, and P. Gilot, Appl. Catal. B: Environ., 20, 47 (1999) https://doi.org/10.1016/S0926-3373(98)00093-9
  4. T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, and M. Niwa, Appl. Catal. B: Environ., 21, 121 (1999) https://doi.org/10.1016/S0926-3373(99)00015-6
  5. S. Hodjati, C. Petit, V. Pitchon, and A. Kienne, Appl. Catal. B: Environ., 30, 247 (2001) https://doi.org/10.1016/S0926-3373(00)00249-6
  6. J. W. Hoard and M. L. Balmer, Society of Automotive Engineers, 982429 (1998)
  7. J. W. Hoard, Society of Automotive Engineers, 2001-01-0185 (2001)
  8. U. Roland, F. Holzer, and F. D. Kopinke, Catal. Today, 73, 315 (2002) https://doi.org/10.1016/S0920-5861(02)00015-9
  9. M. L. Balmer, R. G. Tonkyn, S. E. Barlow, A. Kim, and T. M. Orlando, international PTC Patent Application, WO 00/18494, April (2000)
  10. M. L. Balmer, R. G. Tonkyn, S. Yoon, A Kolwaite, S. E. Barlow, G. Maupin, and J. W. Hoard, Society of Automotive Engineers, 2001-01-3640 (1999)
  11. L. Gang, B. G. Anderson, J. V. Grondelle, and R. A. van Scanten, Catal. Today, 61, 179 (2000) https://doi.org/10.1016/S0920-5861(00)00375-8
  12. C. S. Lee, H. J. Lee, S. W. Choi, J. Kwak, and C. H. F. Peden, Key Engineering Materials, 277-279, 708 (2005) https://doi.org/10.4028/www.scientific.net/KEM.277-279.708
  13. M. L. Balmer, R. G. Tonkyn, and J. W. Hoard, Society of Automotive Engineers, 982511 (1998)
  14. A. G. Panov, R. G. Tonkyn, M. L. Balmer, C. H. F. Peden, A. Malkin, and J. W. Hoard, Society of Automotive Engineers, 2001-01-3513 (2001)
  15. R. G. Tonkyn and S. E. Barlow, Society of Automotive Engineers, 2001-01-3510 (2001)
  16. J. H. Kwak, J. Szanyi, and C. H. F. Peden, Catal. Today, 89, 135 (2004) https://doi.org/10.1016/j.cattod.2003.11.019
  17. D. Barthomeuf and R. Beaumont, J. Catal., 26, 218 (1972) https://doi.org/10.1016/0021-9517(72)90052-8
  18. K. Tsutsumi, H. Kajiwara, and H. Takahashi, Bull. Chem. Soc. Jpn., 47, 801 (1974) https://doi.org/10.1246/bcsj.47.801
  19. K. T. No, H. Z. Chon, T. K. Lee, and M. S. John, J. Phys. Chem., 85, 2065 (1981) https://doi.org/10.1021/j150614a023
  20. N. Y. Chen, S. J. Lucki, and E. B. Mower, J. Catal., 13, 329 (1969) https://doi.org/10.1016/0021-9517(69)90409-6
  21. R. Prins, L. Bertea, and H. W. Kouwenhoven, Appl. Catal. A: General, 129, 229 (1995) https://doi.org/10.1016/0926-860X(95)00105-0
  22. Y. H. Yu, W. J. Chung, C. W. Lee, M. Oh, and W. M. Lee, J. Korean ind Eng. Chem., 14, 236 (2003)
  23. S. Moreno and G. Poncelet, Microporous Materials, 12, 197 (1997) https://doi.org/10.1016/S0927-6513(97)00067-9
  24. C. S. Lee, S. H. Noh, S. S. Kim, S. H. Suh, and C. H. F. Peden, Key Engineering Materials, 277-279, 720 (2005) https://doi.org/10.4028/www.scientific.net/KEM.277-279.720
  25. P. K. Maher F. D. Hunter, and J. Scherzer, Adv. Chem. Ser., 101, 266 (1979)
  26. O. Monticelli, R. Loenders, P. A. Jacobs, and J. A. Martens, Appl. Catal. B: Environ., 21, 215 (1999) https://doi.org/10.1016/S0926-3373(99)00025-9
  27. L. Formi and E. Magni, J. Catal., 112, 437 (1988) https://doi.org/10.1016/0021-9517(88)90158-3
  28. L. Formi and E. Magni, E. Ortoleva, R. Monaci, and V. Solinas, J. Catal., 112, 444 (1988) https://doi.org/10.1016/0021-9517(88)90159-5
  29. C. Torre-Abreu, M. F. Ribeiro, C. Henriques, and G. Delahay, Appt. Catat. B: Environ., 12, 249 (1997)
  30. C. Torre-Abreu, C. Henriques, F. R. Ribeiro, G. Delahay, and M. F. Ribeiro, Catat. Today, 54, 407 (1999)
  31. Y. Wan, J. Ma, Z. Wang, W. Zhou, and S. Kaliaguine, J. Catat. 227, 242 (2004)
  32. B. Coq, D. Tachon, F. Figueras, G. Mabillon, and M. Prigent, Appt. Catat. B: Environ., 6, 271 (1995)
  33. W. Zhang, H. Yahiro, N. Mizuno, J. Izumi, and M. Iwamoto, Langmuir, 9, 2337 (1993) https://doi.org/10.1021/la00033a015