Mammalian Follicular Development and Oocyte Maturation

포유류의 난포발달과 난자성숙

  • Lee, Kyung-Ah (Graduate School of Life Science and Biotechnology, Pochon CHA University College of Medicine)
  • 이경아 (포천중문 의과대학교 생명과학 전문대학원)
  • Published : 2005.09.30

Abstract

Keywords

Acknowledgement

Supported by : 농림부

References

  1. Pincus E, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. 1. The activation of ovarian eggs. J Exp Med 1935; 62: 665-75 https://doi.org/10.1084/jem.62.5.665
  2. Picton HM. Activation of follicle development: the primordial follicle. Theriogenology 2001; 55: 1193-210 https://doi.org/10.1016/S0093-691X(01)00478-2
  3. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001; 122: 829-38 https://doi.org/10.1530/rep.0.1220829
  4. Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 1982;90: 144-53 https://doi.org/10.1016/0012-1606(82)90219-6
  5. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 1991; 13:569-74 https://doi.org/10.1002/bies.950131105
  6. Eppig JJ. Analysis of mouse oogenesis in vitro. Oocyte isolation and the utilization of exogenous energy sources by growing oocytes. J Exp Zool 1976;198:375-82 https://doi.org/10.1002/jez.1401980311
  7. David T. Heller, Daniel M. Cahill and Richard M. Schultz. Biochemical studies of mammalian oogenesis: Metabolic cooperativity between granulosa cells and growing mouse oocytes. Dev Biol 1981; 84: 455-64 https://doi.org/10.1016/0012-1606(81)90415-2
  8. Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod 1983;28: 797-803 https://doi.org/10.1095/biolreprod28.4.797
  9. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 1990; 43: 543-7 https://doi.org/10.1095/biolreprod43.4.543
  10. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 2002; 99: 2890-2894
  11. Albertini DF, Sanfins A, Combelles CM. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online 2003; 6: 410-5 https://doi.org/10.1016/S1472-6483(10)62159-1
  12. Peters H. The development of the mouse ovary from birth to maturity. Acta Endocrinol (Copenh) 1969; 62: 98-116
  13. Lussier JG, Matton P, Dufour JJ. Growth rates of follicles in the ovary of the cow. J Reprod Fertil 1987;81: 301-7 https://doi.org/10.1530/jrf.0.0810301
  14. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocrine Rev 1996; 17: 121-55
  15. Gosden RG. Oogenesis as a foundation for embryogenesis. Mol Cell Endocrinol 2002; 186: 149-53 https://doi.org/10.1016/S0303-7207(01)00683-9
  16. Gosden RG, Bownes M. Cellular and molecular aspects of oocyte development. In: Grudzinskas JG, Yovich JL, editor. Cambridge review in human reproduction, gamete-the oocyte. Cambridge: Cambridge University Press; 1995. p.23-53
  17. Knobil E, Neill JD. The physiology of reproduction. New York: Raven Press; 1988
  18. Eppig JJ. Regulation of mammalian oocyte maturation. In: Adashi EY, Leung PCK, editor. The ovary. New York: Raven press; 1993. p.185-208
  19. Fulka J Jr, First NL, Moor RM. Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Mol Hum Reprod 1998; 4: 41-9 https://doi.org/10.1093/molehr/4.1.41
  20. Sorensen RA, Wassarman PM. Relationship between growth and meiotic maturation of the mouse oocyte. Dev Biol 1976; 50: 531-6 https://doi.org/10.1016/0012-1606(76)90172-X
  21. Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J Reprod Fertil 1984; 72: 323-8 https://doi.org/10.1530/jrf.0.0720323
  22. Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 1995; 42: 437-42 https://doi.org/10.1002/mrd.1080420410
  23. Hirao Y, Tsuji Y, Miyano T, Okano A, Miyake M, Kato S, Moor RM. Association between p34cdc2 levels and meiotic arrest in pig oocytes during early growth. Zygote 1995; 3: 325-32
  24. Eppig JJ, Schultz RM, O'Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol 1994; 164: 1-9 https://doi.org/10.1006/dbio.1994.1175
  25. Eppig JJ, O'Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996; 54: 197-207. https://doi.org/10.1095/biolreprod54.1.197
  26. Masui Y. From oocyte maturation to the in vitro cell cycle: the history of discoveries of MaturationPromoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 2001 ; 69: 1-17 https://doi.org/10.1046/j.1432-0436.2001.690101.x
  27. Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 2004; 70: 535-47 https://doi.org/10.1095/biolreprod.103.022830
  28. Villa-Diaz LG, Miyano T. Activation of p38 MAPK during porcine oocyte maturation. Biol Reprod 2004; 71: 691-6 https://doi.org/10.1095/biolreprod.103.026310
  29. Abrieu A, Doree M, Fisher D. The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci 2001; 114: 257-67
  30. 인쇄중: Lee KA, Yoon SJ, Park CE, Choi DH, Yoon TK, Cha KY. Simultaneous detection of 7 phosphoproteins of various signal transduction pathways in a single sample during oocyte maturation process. 61th Annual Meeting of the American Society for Reproductive Medicine, Montreal, Quebac, Canada, October 15-19, In press 2005
  31. Gandolfi TA, Gandolfi F. The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 2001; 55: 1255-76 https://doi.org/10.1016/S0093-691X(01)00481-2
  32. Coticchio G, Sereni E, Serrao L, Mazzone S, Iadarola I, Borini A. What criteria for the definition of oocyte quality? Ann N Y Acad Sci 2004; 1034: 132-44 https://doi.org/10.1196/annals.1335.016
  33. Eichenlaub-Ritter U, Schmiady H, Kentenich H, Soewarto D. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod 1995; 10: 2343-49
  34. Verlinsky Y, Lerner S, Illkevitch N, Kuznetsov V, Kuznetsov I, Cieslak J, Kuliev A. Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reprod Biomed Online 2003; 7: 336-41 https://doi.org/10.1016/S1472-6483(10)61874-3
  35. Serhal PF, Ranieri DM, Kinis A, Marchant S, Davies M, Khadum IM. Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod 1997; 12: 1267-70 https://doi.org/10.1093/humrep/12.6.1267
  36. Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum Reprod 1998; 13: 3431-3 https://doi.org/10.1093/humrep/13.12.3431
  37. Keefe D, Liu L, Wang W, Silva C. Imaging meiotic spindles by polarization light microscopy: principles and applications to IVF. Reprod Biomed Online 2003; 7: 24-9 https://doi.org/10.1016/S1472-6483(10)61724-5
  38. Moon JH, Hyun CS, Lee SW, Son WY, Yoon SH, Lim JH. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod 2003; 18: 817-20 https://doi.org/10.1093/humrep/deg165
  39. Cohen Y, Malcov M, Schwartz T, Mey-Raz N, Carmon A, Cohen T, Lessing JB, Amit A, Azem F. Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod 2004; 19: 649-54 https://doi.org/10.1093/humrep/deh113
  40. Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril 2001; 75: 348-53 https://doi.org/10.1016/S0015-0282(00)01692-7
  41. Lechniak D. Quantitative aspect of gene expression analysis in mammalian oocytes and embryos. Reprod Biol 2002; 2: 229-41
  42. Holm P, Callesen H. In vivo versus in vitro produced bovine ova: similarities and differences relevant for practical application. Reprod Nutr Dev 1998; 38: 579-94 https://doi.org/10.1051/rnd:19980601
  43. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 2002; 61: 234-48 https://doi.org/10.1002/mrd.1153
  44. Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 2000; 53: 21-34 https://doi.org/10.1016/S0093-691X(99)00237-X
  45. Yoon SJ, Choi DH, Lee WS, Cha KY, Kim SN, Lee KA. A molecular basis for embryo apposition at the luminal epithelium. Mol Cell Endocrinol, 2004; 219: 95-104 https://doi.org/10.1016/j.mce.2004.01.007
  46. 인쇄중: Yoon SJ, Kim KH, Chung HM, Choi DH, Lee WS, Cha KY, Lee KA. Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil Steril. In press 2005
  47. Patel OV, Suchyta SP, Sipkovsky SS, Yao J, Ireland JJ, Coussens PM, Smith GW. Validation and application of a high fidelity mRNA linear amplification procedure for profiling gene expression. Vet Immunol lmmunopathol 2005; 105: 331-42 https://doi.org/10.1016/j.vetimm.2005.02.018
  48. Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun T, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig J, Morrell C, Doi H. Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 2000; 127: 1737-49
  49. Robert C, Bames FL, Hue I, Sirard MA. Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. Mol Reprod Dev 2000; 57: 167-75 https://doi.org/10.1002/1098-2795(200010)57:2<167::AID-MRD8>3.0.CO;2-P
  50. Dalbies-Tran R, Mennillod P. Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol Reprod 2003; 68: 252-61 https://doi.org/10.1095/biolreprod.102.007872
  51. Sirard MA, Dufort I, Coenen K, Tremblay K, Massicotte L, Robert C. The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reprod Suppl 2003; 61: 117-29
  52. Zeng F, Schultz RM. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyteand embryo-specific genes. Biol Reprod 2003; 68: 31-9 https://doi.org/10.1095/biolreprod.102.007674
  53. Bermudez MG, Wells D, Malter H, Munne S, Cohen J, Steuerwald NM. Expression profiles of individual human oocytes using microarray technology. Reprod Biomed Online 2004; 8: 325-37 https://doi.org/10.1016/S1472-6483(10)60913-3
  54. Cui XS, Shin MR, Lee KA, Kim NH. Identification of differentially expressed genes in murine embryos at the blastocyst stage using annealing control primer system. Mol Reprod Dev 2005; 70: 278-87 https://doi.org/10.1002/mrd.20210
  55. Hwang KC, Park SY, Park SP, Lim JH, Cui XS, Kim NH. Specific maternal transcripts in bovine oocytes and cleavaged embryos: identification with novel DDRT-PCR methods. Mol Reprod Dev 2005; 71: 275-83 https://doi.org/10.1002/mrd.20282
  56. Hwang KC, Lee HY, Cui XS, Kim JH, Kim NH. Identification of maternal mRNAs in porcine parthenotes at the 2-cell stage: a comparison with the blastocyst stage. Mol Reprod Dev 2005; 70: 314-23 https://doi.org/10.1002/mrd.20204
  57. Lee KF, Kwok KL, Chung MK, Lee YL, Chow JF, Yeung WS. Phospholipid transfer protein (PLTP) mRNA expression is stimulated by developing embryos in the oviduct. J Cell Biochem 2005; 95: 740-9 https://doi.org/10.1002/jcb.20444
  58. Park CE, Cha KY, Kim K, Lee KA. Expression of cell cycle regulatory genes during primordialprimary follicle transition in the mouse ovary. Fertil Steril 2005; 83: 410-8 https://doi.org/10.1016/j.fertnstert.2004.06.074
  59. 인쇄중 : Pennetier S, Uzbekova S, Guyader-Joly C, Humblot P, Mermillod P, Dalbies-Tran R. Genes Preferentially Expressed in Bovine Oocytes Revealed by Subtractive and Suppressive Hybridization. Biol Reprod. In press 2005
  60. Shin MR, Cui XS, Jun JH, Jeong YJ, Kim NH. Identification of mouse blastocyst genes that are downregulated by double-stranded RNA-mediated knockdown of Oct-4 expression. Mol Reprod Dev 2005; 70: 390-6 https://doi.org/10.1002/mrd.20219
  61. Vallee M, Gravel C, Palin MF, Reghenas H, Stothard P, Wishart DS, Sirard MA. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol Reprod 2005; 73: 63-71. https://doi.org/10.1095/biolreprod.104.037069
  62. Yoon SJ, Chung HM, Cha KY, Kim NH, Lee KA. Identification of differential gene expression in germinal vesicle vs. metaphase II mouse oocytes by using annealing control primers. Fertil Steril 2005; 83: 1293-6 https://doi.org/10.1016/j.fertnstert.2004.09.037
  63. Eppig JJ, O'Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996; 54: 197-207. https://doi.org/10.1095/biolreprod54.1.197
  64. Hirao Y, Nagai T, Kubo M, Miyano T, Miyake M, Kato S. In vitro growth and maturation of pig oocytes. J Reprod Fertil 1994; 100: 333-9 https://doi.org/10.1530/jrf.0.1000333
  65. Yamamoto K, Otoi T, Koyama N, Horikita N, Tachikawa S, Miyano T. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology 1999; 52: 81-9 https://doi.org/10.1016/S0093-691X(99)00111-9
  66. Daniel SA, Armstrong DT, Gore-Langton RE. Growth and development of rat oocytes in vitro. Gamete Res 1989; 24: 109-21 https://doi.org/10.1002/mrd.1120240113
  67. Roy SK, Greenwald GS. Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture. J Reprod Fertil 1989; 87: 103-14 https://doi.org/10.1530/jrf.0.0870103
  68. Jewgenow K. Role of media, protein and energy supplements on maintenance of morphology and DNA-synthesis of small preantral domestic cat follicles during short-term culture. Theriogenology 1998; 49: 1567-77 https://doi.org/10.1016/S0093-691X(98)00102-2
  69. Shuttleworth G, Broughton Pipkin F, Hunter MG In vitro development of pig preantral follicles cultured in a serum-free medium and the effect of angiotensin II. Reproduction 2002; 123: 807-18 https://doi.org/10.1530/rep.0.1230807
  70. Cecconi S, Barboni B, Coccia M, Mattioli M. In vitro development of sheep preantral follicles. Biol Reprod 1999; 60: 594-601 https://doi.org/10.1095/biolreprod60.3.594
  71. Huanmin Z, Yong Z. In vitro development of caprine ovarian preantral follicles. Theriogenology 2000; 54: 641-50 https://doi.org/10.1016/S0093-691X(00)00379-4
  72. Harada M, Miyano T, Matsumura K, Osaki S, Miyake M, Kato S. Bovine oocytes from early antral follicles grow to meiotic competence in vitro: Effect of FSH and hypoxanthine. Theriogenology 1997; 48: 743-55 https://doi.org/10.1016/S0093-691X(97)00298-7
  73. Gutierrez CG, Ralph JH, Telfer EE, Wilmut I, Webb R. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 2000; 62: 1322-8 https://doi.org/10.1095/biolreprod62.5.1322
  74. Roy SK, Treacy BJ. Isolation and long-termculture of human preantral follicles. Fertil Steril 1993; 59: 783-90
  75. Abir R, Franks S, Mobberley MA, Moore PA, Margara RA, Winston RM. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril 1997; 68: 682-8 https://doi.org/10.1016/S0015-0282(97)00264-1
  76. Telfer EE. In vitro models for oocyte development. Theriogenology 1998; 49: 451-60 https://doi.org/10.1016/S0093-691X(97)00417-2
  77. Cortvrindt R, Smitz J. In vitro follicle growth: achievements in mammalian species. Reprod Domest Anim 2001; 36: 3-9 https://doi.org/10.1046/j.1439-0531.2001.00261.x
  78. Cortvrindt RG, Smitz JE. Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Hum Reprod Update 2002; 8: 243-54 https://doi.org/10.1093/humupd/8.3.243
  79. Miyano T. Bringing up small oocytes to eggs in pigs and cows. Theriogenology 2003; 59: 61-72 https://doi.org/10.1016/S0093-691X(02)01274-8
  80. Senbon S, Hirao Y, Miyano T. Interactions between the oocyte and surrounding somatic cells in follicular development: lessons from in vitro culture. J Reprod Dev 2003; 49: 259-69 https://doi.org/10.1262/jrd.49.259
  81. Dissen GA, Romero C, Hirshfield AN, Ojeda SR. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinol 2001; 142: 2078-86 https://doi.org/10.1210/en.142.5.2078
  82. Vitt UA, McGee EA, Hayashi M, Hsueh AJ. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP-17 in ovaries of immature rats. Endocrinol 2000; 141: 3814-20 https://doi.org/10.1210/en.141.10.3814
  83. Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 2001; 175: 123-30 https://doi.org/10.1016/S0303-7207(01)00391-4
  84. Nilsson E, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002; 188:65-73 https://doi.org/10.1016/S0303-7207(01)00746-8
  85. Kezele PR, Nilsson EE, Skinner MK. Insulin but not insulin-like growth factor-l promotes the primordial to primary follicle transition. Mol Cell Endocrinol 2002; 192: 37-43 https://doi.org/10.1016/S0303-7207(02)00114-4
  86. Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev 2004; 69: 159-63 https://doi.org/10.1002/mrd.20163
  87. Ieon EH, Yoon SJ, Cha KY, Kim NH, Lee KA. Analysis of genes expressed in early developmental stage of mouse ovaries. Devel Reprod 2003; 7: 127-36