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Comparative Analysis of Two EOQ based Inventory Models
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In this paper, we compare two EOQ based inventory models under total cost minimization and profit
maximization to investigate the difference in the optimal solutions. First of all, optimal solutions for both models
through geometric programming (GP) techniques are found considering production (lot sizing) as well as
marketing (pricing) decisions. An investigation of the effects of the changes in the optimal solutions according to
varied parameters is performed by studying optimality conditions as well as by performing numerical analysis.
We then conduct comparative analysis between the models to show the relationships between the optimal
solutions of the models where certain conditions in the cost per unit and the demand per unit time are given.
Several interesting economic implications and managerial insights are observed from this analysis.
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1 Introduction

This paper develops and analyzes two inventory
models which extend the classical economic order
quantity (EOQ) modd. One mode uses totd cost
minimization and the other modd uses profit
maximization. The extensions of these models to the
classicd economic order quantity are: (1) For the cost
minimization model, the cost per unit is a power
function of the order quantity whereas the cost per unit
is assumed to be fixed in the EOQ modd, (2) For the
profit maximization model, we consider the cost per
unit and the demand per unit time as a power function
of the order quantity and the price per unit
respectively, whereas the cost per unit is assumed to be
fixed and the demand per unit time is independent of
the price per unit in the EOQ moddl. That is, the profit
maximization models consider the cost functions for
the cost minimization models with the demand per unit
time related to the price per unit, (3) In deriving and

analyzing the optimal solutions, we employ geometric
programming (GP) technique as well as derivative
based classicdl first and second order conditions.

One of motivating factors for developing these two
models is the need to develop different cost functions
and demand functions that better model today’s
inventory problem by not having the fixed unit cost
and demand independent of the price as the EOQ
model does.

The cost minimization model can be applied to
companies which focus on the production (lot sizing).
The profit maximization model can be used in
functionally centralized firms where production (lot
szing) and pricing (marketing) decisions can be made
a the same time. The second is the comparison of the
models and the relationship between the optimal
solutions that can be determined under certain
conditions. By comparing the modedls, we can derive
managerial insights and sdlect an optimal inventory
policy.

GP has been very popular in engineering design

* Corresponding author : Senior Researcher Hoon Jung, Postal Technology Research Center, Electronics and Telecommunications Research
Ingtitute, Degjeon, 305-350, Fax : +82-42-860-6508, E-mail : hoonjung@etri.re

Received May 2004; revision received April 2005; accepted August 2005.



Comparative Analysis of Two EOQ based Inventory Models

research since its inception in the early 1960s. Even
though GP is an excellent method to solve nonlinear
problems, the use of GP in inventory models has been
reatively infrequent. Kochenberger (1971) was the
first to solve the basc EOQ mode using GP. In
Worrdl and Hall (1982), GP techniques were utilized
to solve an inventory modd with multiple items
subject to multiple constraints. Cheng (1989) applied
GP to solve modified EOQ models and to perform
sengtivity andysis. Lee (1993) dso illustrated the
usefulness of bounding and sensitivity andlysis in the
profit maximization model.

There have been numerous publications on EOQ
models with fixed cost per unit. However, severa
papers have relaxed the assumption of the fixed cost
per unit for the EOQ mode s since 1990s. For example,
Jung and Klein (2004) and Lee (1993, 1994) assumed
the cost per unit as a function of the order quantity.
This assumption means that the production exhibits
economies of scale when the order quantity increases.
In addition to cost, Kim and Lee (1998), Lee (1993,
1994), and Lee, Kim, and Cabot (1996) relaxed the
fixed demand per unit time and assumed the demand
per unit time is afunction of the price per unit. That is,
the demand per unit time is assumed to be dependent
upon the price per unit.

In this paper, we compare the cost minimization
model to the profit maximization modd and
investigate the difference in the optimal solutions. The
cost minimization criterion is most appropriate for
production departments of economic agents which are
provided with fixed budgets and no control over the
price of thefinal product.

In contrast, the profit maximization considers the
behavior of economic agents who are both sdllers (the
price is to be determined) as wdll as producers of a
product. Hence, our comparison means tha the
monopolistic market of the profit maximization modd,
where the price is controllable, is compared with the
competitive market of the cost minimization mode
where the price is given by the market. The difference
in the optimal order quantity of these moddls indicates
the quantity that is over ordered/under ordered due
to the error in estimating the cost function and the
price function of the models.

That is, it implies that we use the monopolistic
market (competitive market) when the competitive
market (monopolistic market) should have been used.
From our comparison, we provide the relationships
between the optima order quantities by comparing our
cogt functions without computing the optima solutions.
This means that we can determine optima inventory
policy by estimating the cost functions.

The remainder of this paper is organized as follows.
First, we present assumptions and the two models for
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total cost minimization and profit maximization. We
then optimally determine the order quantity and the
price for our models. In the next section, we obtain the
optimality results using the first and second order
conditions. That is, the change in the optimal solutions
according to varied parameters is andyzed to see the
effect on inventory policy. Then, we compare and
contragt the cost minimization model and the profit
maximization model to gain managerid insights.
Finaly, we make concluding remarks and comment on
future research aress.

2. Assumptions

We define the following variables and parameters for
our models.

P = price per unit (dollar/unit, decision variable for
maximization model)

Q = order quantity (units, decison variable for
minimization and maximization models)

D = demand per unit time (units/unit time)

C = cost per unit (dollar/unit)

A = ordering cost (dollar/batch)
i = inventory carrying cost rate (%/unit time)
a = scaling congtant for D

d = scaling constant for C
a = price adticity of demand
J = quantity discount factor

Three assumptions, which are frequently found in
the EOQ literature, are used in this paper: (1)
replenishment is instantaneous; (2) no shortage is
alowed; (3) the order quantity is ordered in batch.

In addition, we assume that the cost per unit is a
power function of the order quantity displaying
quantity discounts for the minimization model. That is,
C(Q) = dQ ™. For the maximization model, we assume
that C(Q =dQ° and D(P)=aP™®. D(P)=aP
indicates that the demand per unit time is assumed to
be a decreasing power function of the price per unit.

3. Modds

3.1 Minimization Modd

Given the above definitions and assumptions, the
total cost per unit time (= TC(Q)) of the minimization
model is the sum of the ordering cost per unit time,
variable cost per unit time, and inventory holding cost
per unit time. Then, we have the following mathemati-
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cd formulations from the GP perspective.

Min TC(Q) = AD/Q + C(D, Q)D + iC(Q)Q/2
= ADQ ! +dQ 9D + 0.5idQ*? (1)

The objective function of the minimization model is
an uncongrained posynomia with one degree of
difficulty. The development of the solution procedure
for this modd is similar to the work by Cheng (1989,
1991). In the unconstrained posynomia GP problem,
the dual variable, Wi, provides the weight of ith term
of the prima problem over Q by the following
equation.

Ui =w d(w) @)

d(w") isthe optimal dual objective function and the
optima weights, W, W, and, W; represent
proportions of the setup cost (U, ), the variable cost
(U5), and the inventory holding cost (U3) to the total
cost per unit time, respectively. We then have the
following relations for our models.

u; = AolQ"[*, us =aple' [ Ul —osidle [ (3)

The optimal weights can be calculated from the dud
problem and the substituted dua problem using GP
technology(Cheng (1991) and Jung and Klein (2004)).
Then, the corresponding prima solutions can be
obtained from equation (3) (see Appendix).

Q = AD/(w d(w)) = [dD/(w;d(w*))]M

= [wid(w )0 5id)[ ¢ (4)

3.2 Maximization Moddl

Under the above definitions and assumptions, the
profit per unit time (=7(P, Q)) of the maximization
mode is the revenue per unit time minus the sum of
the above total cost per unit time. Then, we have the
following mathematical formulations for the profit per
unit time.

Max 7(P. Q) =PD(P) - AD(P)/Q + C(Q)D(P)
+iC(QQ/2]
= aP"” - AaP*Q ' —adP Q™
- 0.5idQ*? (5)

The development of the solution procedure for the
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maximization modd is found in Lee (1993). The
objective function, equation (5), is a signomia
problem with one degree of difficulty. Although global
optimality is not guaranteed for a signomial problem,
the profit function can be transformed into a
posynomid problem with one additiona variable and
constraint. This technique was developed by Duffin,
Peterson, and Zener (1976). In the constrained
posynomia GP problem, the dua feasible solutions,
o and A provide the weights of the terms in the
congtraints of transformed primal problem by the
following equation.

Vi =(Ui/j.,i=1,2,3,4 (6)
4 4

whereZ:Vi =land A= Za)i
i=1 i=1

These weights represent proportions of the profit
(M1), the ordering cost (V,), the variable cost (Vs3),
and the inventory holding cost (V) to the totd
revenue. We then have the following relations for our
models.

Vi =a'P*'z V,=AP'Q

V;=dP7'Q’ V, =05a"'dP*'Q"’ @

From the above equations, the corresponding primal
solution can be obtained (see Appendix).

1/1-6
P:[A’ﬁdvzﬁ /vg][ (o

= [adV,V, /(0.5idAV,) [H@D)]
Q = [AV;/(dvy) /40

1
{ AV, (@D 1a=9) ]1—5
= 1 5 (@D 1@-5) (8)
o.5|d[A aV, ](

The optimd weights are computed from the dua
problem and the substituted dua problem, and
P'andQ" ae cdculaed from equation (8).
According to the duality theorem of GP, we can obtain
7" from the rdationship (1/2") =d(w") where 7~ =
7' = Max z Therefore, 7~ =1d(w’) . Also, z* can
be obtained from the profit function (5) after
P" and Q" are substituted.
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4. Optimality Results

4.1 Minimization Modd

From the first and second derivatives of the optima
order quantity and the optimal totd codt, we
investigate the changes in Q@ and T¢* according to
varied parameters, A, i, d, D, and & . Since the closed
form solutions can not be obtained, we use the implicit
function theorem (see e.g., Hildebrand (1976)) with
thefirst and second order conditions.

The firgt and second order conditions for the global
optimality from the total cost function (1) are

JaTc __ ADQ 2 - &dDQ 7 + 1(1— 8)idQ? =0 (9
Q 2
2
07TC _ 2ADQ 2 + 5(1+ 8)dDQ 2
0Q?

- %5(1- 5)idQ? >0 (10)

Firgt, we invegtigate the change of the optimd order
quantity as the ordering cost A varies. From the first
order condition, (9), using the implicit function
theorem, we have

Q"

_plo*[? + 2400’ [ % + 5L+ s)apfR [ <

-1-5 0Q _0

-Zoa- ol [ 22

(11)

Equation (11) can be expressed by
oo’ [
200[0"[? + sa+ s)dolo [

Q _
0A

- %5(1— sidle' [

(12)

By applying (10) to (12), we obtain the following
result.

Q"
T (13)

From the second derivative of (12), we can aso
obtain

0°Q"
0A?
—2D[Q' ]_32%[‘5‘1'3[@ ]—2-5 5(12— 8) N %id[Q*]_H [ 2)2(5 - 1)}

-2

{ZAD[Q* [*+sa+ ool |77 - % sa- ydo }HT

<0 (149
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Equation (13) and (14) indicate that the optimal
order quantity is an increasing and concave function
with respect to the ordering cost A.

For the total cost, we can apply the above procedure
and obtain

9°TC”
oA?

oTC”

> <0
0A ,

(15

The following results for i, d, D, and J are obtained
by similar procedures shown for A.

9 <o a;?* >0, Mo a:g:* <0 (19
8;(); <0, a;sz* > O’ 8';;3 >0, a;—g* <0 (17)
% >0 (18)
%O (19)

The &bove results indicate that any increase
(decrease) in A or decrease (increase) ini or d results
in a larger (smaler) optimal order quantity, and any
increase (decrease) in A, i, or d results in a larger
(smdller) optima total cost.

Any increasein A leads to higher inventory cost and
therefore, a the same time, to higher Q" and TC” . If
the inventory holding cogt, i, which is the part of total
cost, increases, total cost increases. In this case, a
decision maker will reduce Q" to save the expense of
storing inventory. The fact that when we increase the
scaling constant for C, Q decreases represents that if

the cost per unit is increased by scaling constant, Q
will be decreased because of economies of scale.

4.2 Maximization Model

For this model, the changes in Q, P, ad 7
according to the changes in the parameters, i, a, d, @,
and § areinvestigated by the computational anaysis.
For the experiment, we use the basic parameter values:
A=50,i=0.1,a=500000,f=5 a =25,and § =
0.2. The vaues of the parameters to andyze with
optima solutions are dlowed to vary + 10 %, + 20 %,
£30%, -~ £90%, £100%for A i,a,d, £1%,
2%, £3%, - £9%, £10%for ,and £5%, +
10%, £ 15%, -~ +45%, + 50 %for o .

The computational results for the changes in the
optimal solutions according to the changes in the
inventory holding cost, the scaling congtant for
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demand, and the scaling constant for unit cost is shown
in <Figure 1>, <Figure 2> and <F gure 3> respectivedy.

<Figure 1> indicates that any increase (decresse) in
inventory holding cog, i, results in a smaler (larger)
optimal order quantity, a higher (lower) optimal price,
and lower (higher) optima profit. If the inventory
holding cogt, i, which is the part of tota codt, is
increased, total cost will be increased and therefore
profit will be reduced. In this case, a decison maker
will reduce Q" to save the expense of storing
inventory. From <Figure 2>, we can observe that price
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is reduced as a increases since a is a constant for
demand and demand is a decreasing function of price.
This results in higher profit and order quantity from
the increased demand. <Figure 3> shows that Q" and
7z~ decrease (P* increases) when we increase the
scaling constant for C. This represents that if the cost
per unit is increased by the scaling constant, Q™ will
be decreased because of economies of scale. Increases
in unit cost will lead to higher tota cost and price, and
hence, lower profit.
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Figure 1. Changes in the order quantity (&), the price (b), and the profit (c)
with respect to change in the inventory holding cost.
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Figure 2. Changes in the order quantity (a), the price (b), and the profit (c)
with respect to change in the scding congtant for demand.
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Figure 3. Changes in the order quantity (&), the price (b), and the profit (c)
with respect to change in the scading congtant for the unit codt.
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5. Comparative Analysis

The comparative analysis here is to study the relation-
ship between the optima solutions of the maximization
model and the minimization model. The maximization
model is a monaopolistic market because the model can
control both price and demand. However, the minimi-
zation model is a competitive market which means that
the price is given in the market. Hence, by investiga-
ting the difference in the optima order quantity of the
maximization mode and the minimization model, we
can observe interesting manageria insights. We denote
Cc’ QC’ and Dc (Cp’ Qp! and Dp) as the cost per unit,
the order quantity, and the demand per unit time of the
minimization mode (maximization model), respecti-
vely. Also, the asterisk sign means that the value is
optimal. We assume that the following parameters are
identical for both models. A, i, d, and § .

We investigate the error, |Q; - Qp| by comparing
Q" ’s of the maximization mode and the minimization
model where certain conditions in the demand per unit
time are given. Also, the optima order quantities of
both models are compared where certain conditions in
the cost per unit are given. We use the first derivative
of thetotal cost and the profit with respect to the order
quantity to compare Q; and Q, .

From the first derivative of the total cost in the
minimization model and the first derivetive of the
profit in the maximization mode, and using
D, =aP,” wehave

ADe[Q: ] + aup [z ™

al:]”
_ A0, [o, ] + daoy oy [
iy

By manipulating (20), we have the following
relationship.

= 0.5(1- 5)i

(20)

o, _ A[Qp ]—2+5 . Jd[Q; ]-1
Dp Ao [ +alq:]”

Equation (21) can be used to compare the optimal
order quantities in both models for the cases

Qe >Q;. Qe <Q;, and Q¢ =Q; under the three

(21)
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conditions Dc > Dp, Dc < Dp, and Dc > Dp. If
Dc > Dy | then the right hand side of (21) should be

]—2+(5'

less than 1. This implies @; <@} since (@3]~ and

Q1" should be greater then 1057 ana [R5,
respectively, to saisfy Dc>Dp where 0 < 6 < 1.
With the similar approach, we can obtain the following
property under the three conditions.

Property l.alf D, > Dp,thenQé >Q;_
1b If D, <D,,thenQ; <Q, .
1c If D, =D, thenQ; =Q, .

Property 1.aand 1.b indicate that D¢ is maximum
and minimum boundary point of Dy, respectively.
The difference in the optima order quantity implies
the quantity that is over ordered/under ordered.
Property 1 shows that we can determine optimal
inventory policy by estimating D p (we assume that we
have previous data of D p) without computing Q; and
Q, . To estimate the demand function for the model,
we fird edimate a by applying smple linear
regression with previous data for D and P, and then
estimate the demand function using ¢ . The estimation
of the demand function gives us the relationship
between Q; and Qp.

The cost minimization model is appropriate for
production departments of economic agents with fixed
budgets, and the profit maximization model considers
both of production and pricing. Hence, decision maker
can apply the above property to choose the better
modd in certain circumstances whether he wants to
focus on both of lot sizing and marketing or he
consders only lot szing. That is, by estimating
demand function of maximization model from the
previous data, he can adjust the error of the optimal
solutions to produce an optimal policy.

From dlQ:]” = ¢, and d[Q; [ - C,, equation (21)
becomes

& i A[Q; ]—2+5‘ N &p [Q:) Tlﬂi‘

Do A [ + s fos [

Using (22), we can examine al the cases Q; >

Q;,Q; <Q;- and =Q; under the three conditions,
Ce>Cp.Ce<Cy,and Cc =Cy. Thisyields

(22)
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Property 2.a If C,>C,, then D,<D, and Q <Q,
2b If C;<C,, then D, >Dyand Q >Q,
2.c 1f G, =C,, then D,=D,and Q. =Q,

Property 2 indicates that if C. and Cp can be
estimated, the relationship between C. and Cp as
well as the rdlationship between Q; and Qp can be
andyzed. To estimate the cost function for both
models, we first assume that we have previous data for
C and Q. Then, for the cost function, C; =dQ.?,
C,=dQ;%, -+ C,=dQ;?, we can estimate 5 by
taking the logarithm to transform the cost function into
alinear model and then apply simple linear regression.
Hence, the estimation of C. and Cp gives us the
relationship between Q; and Q; aswel as maximum
and minimum boundary point of Dp. Property 2
indicates that we can determine optima inventory
policy from C; and Cp without computing optimal
solutions if the difference in the optimal solutions is
found. For example, that is, if we know Q: > Qp (i.e,

Q. isover ordered or Q; is under ordered) from
Ce <Cp, we can increase C. (or decrease Cp) to
reduce the error in the optimal order quantity. This
adjustment will give us optimal policy for our models.

6. Conclusions

In this paper, we andyzed two EOQ based inventory
models under tota cost minimization and profit
maximization via geometric programming (GP)
techniques. We compared and contrasted our models
and determined optima inventory policies without
computing solutions. This gave us interesting
managerial implications. In addition, we performed
optimality analysis to investigate the effects of the
changes in the optimal solutions according to the
changes in parameters.

The two models we have investigated may provide
the basis for numerous further research areas. These
models can be a basis for inventory models integrated
with quality, setup cost, and process improvement
issues (see eg., Cheng (1989, 1991)). Due to the
suitability of GP for deding with exponentia
functions, we can apply these to more comprehensive
model, where the effects of marketing mix variables
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such as advertisng and promotion activities on
demand are represented by an exponentid function.
We can dso extend our models to the multi  product
case where the nonlinear interactions among related
products with respect to their demands are taken into
account.

Appendix

For the minimization modd, we use the following
dual problem to solve our problem.

Max d(w) = [AD/w; " [dD/w;, | [0.5id/ws | (A1)
st W t+W, +wy=1

W, — W, + (1-0)wy =0

Wy, Wy, Wy >0

(A.2)

There are not enough equations to determine the
optimal weights since we have two linear equations
and three variables (i.e,, under  determined). However,

we can express the weights, W4 and Wy, in termsof ws

W, = (-0 + wWg)/(1-0)

W, = (1- (2- 8)ws)/(1- &) (A.3)
The normality condition in conjunction with the dua

variables being positive yields 0< W, W,, W3 <1, By

substituting (A.3) into 0<wy, W, Wy <1 we have the

following conditions.

o<wg <1
SI(2-8) <wy <1U(2-5) (A.4)
From (A.3), if =1, then WwW;<5 and

w3 >1/(2 - 9) to satisfy the positivity condition of the
dua variables. But, this does not coincide with (A.4).
Hence, we know that the dual problem isinfeasible if
621 Ww;<d, and W3 21(2-9). Therefore, the
positivity conditionis
0<o<lwy>d,andw; <l/(2-0) (A.5)
After combining (A.4) and (A.5), we can obtain the
following dua feasibility condition.

Lemma 1. (Dual feasbility condition for minimization
model)
If 0<0<l10<w<(@-0)/(2-9),0<w, <1, and
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d <wz <1/(2- ), then the dud problemisfeasible. Equation (A.8) can be easily maximized by any line
search technique. After the optimal weight ws is
The condition 0 < & <1 has been used by Arcelus  obtained from (A.8), w; andw, can be caculated
and Srinivasan (1985, 1988), Jung and Klein (2004),  from (A.3). After applying GP to solve the minimiza-
and Lee (1993, 1994). We will focus on the cases  tion primal problem expressed in (1), we can obtain
where the discount factor is relatively small. the optima order quantity from the following
Since the model has one degree of difficulty, wecan  relationship.
solve this with the following substituted dua function,
d(ws), to find an optimal solution. By substituting US i = U w) =U S w) = AD[Q;]_l/wI

(A.3) into the dud objective function (A.1), where W3

is the only variable, the substituted dual problem is - dp|Q; [* 1w, = 05idlQs [0 rwi A9
formed. '
Max d(ws) = For the maximization model, we rewrite the

o/ L-5)] unconstrained signomid problem, equation (5), to
[AD/[(=5 + w3)/(1- 5)]] demonstrate the transformation as follows:

[dD/[(1— (2 - S)ws)/ (L — &) ][ &) ED)[o i w, [ (A.6) Max 2
By taking the logarithm of the objective function of ~ s.t. aP™* - AaP Q" —adP“Q ™ -05dQ™ >z (A10)
the subgtituted dud problem, we obtain the following
concave function in one variable. Because constraints  Which is equivalent to the following transformed
of the dual problem are linear, these congtraintsforma  primal problem
convex region. Therefore, the dua problemistofind a
dationary point for the concave objective function Min 2zt
subject to the set of convex constraints. This function st atP*z+ APIQt+dP Q™
has a guaranteed global optimal solution. The proof of Al
the concavity of log d(Ws) is shown by Duffin, +0.5ia 'dP Q0 <1 (A.11)
Peterson, and Zener (1976).
This transformed primal function is a constrained
posynomia problem with one degree of difficulty

Max log d(ws) = which is guaranteed to have aglobal optimal.

—[(=6 + wg)/(1- 8)|log[(—5 + ws)/[AD(L- 5)]] Instead of dealing with (A.11) to obtain the solution,
~[1-@- 8w J/@-8)]logll- (2 - S)ws J/[dDA - 8)]] we use the following dud problem which is usualy
—w; log|ws /(0.5id)] (A7) easier to solve.
Setting the first derivative to zero Max d(®) = [V a, | [a‘l/ilwl]w1 (AL w, |
dlogd(ws) _ [dA/ a)3]‘”3 [O.5i atdi/ a)4]m4 (A.12)

oWy B
s.t. wp=1

~-[(-6 + wy)/(1- 5)]AD(- 5)/ (-6 + w) [U[AD(1 - 5)]] ~wy +w; =0

~[r@- 6)]log[(-6 + ws)/[ADEA- 5)]] (-0, - w; —ws + (-1, =0 (A.13)
- [2- @~ o)wsl - 8)]dD - 6)/[1~ 2~ W[~ (2~ 8)/[dDE - &)]] —W, — 6wz + (1-6)w, =0
~[-@2-6)1-8)]log[l1 - (2 - S)w; [dD(L- 8)]] w >0fori=0,1234

—w,[0.5id/w, J1/(0.5id) | - log[ws/(0.5id)]
(2-8)1(1-6)
_ Iog[[l—(Z—mwg] }

Wy [_5 + W, ]l/(l—é)

Wha’eﬂ:wl+CU2+a)3+CU4

From (A.13), we can express @y, &y, W, W3, and A
interms of @4,
}ZO (A.8) Wy =w, =1
w, = [6(1-a)+ (- ad)w,|I(1-5)

log| 1ADA= O™ [05id]
[dD(1 - §)[2-9)(=9)
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Wy = @ -1+ (@ + 6 - 2w, ]IA-6)
A=a+ow,

(A.14)

From our assumption 0 < 6 < 1 and the positivity
condition (@; >0), we know that the dud problem is
infeasibleif o >1and ad >1 (in this case, @, can not
be positive) or if a<land o+ <2 (inthiscase, @3
can not be pogtive). Hence, the following dua
feasibility conditionistrue.

Lemma 2 (Dual feasibility condition for maximization
model)
If a>1, ad<1, 0<d<1,and 0<S<a<1, then
the dua problemisfeasible.

The price eadticity of the demand per unit time, &,
represents the relative change in the demand with
respect to the corresponding relative change in the
price. Our assumption @ > 1isamild onesince & <
1 impliesthat the price per unit has little impact on the
demand per unit time. The condition «>¢ indicates
that the price dasticity with respect to the demand is
greater than the cost dasticity with respect to the order
quantity. The condition 0 < § < 1 will be assumed for
this moddl since any § > 1 represents too much
discounting and would be unredigtic.

The optimal solution procedure is smilar to the
minimization modd.
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