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1. Introduction

This paper develops and analyzes two inventory
models which extend the classical economic order
quantity (EOQ) model. One model uses total cost
minimization and the other model uses profit
maximization. The extensions of these models to the
classical economic order quantity are: (1) For the cost
minimization model, the cost per unit is a power
function of the order quantity whereas the cost per unit
is assumed to be fixed in the EOQ model, (2) For the
profit maximization model, we consider the cost per
unit and the demand per unit time as a power function
of the order quantity and the price per unit
respectively, whereas the cost per unit is assumed to be
fixed and the demand per unit time is independent of
the price per unit in the EOQ model. That is, the profit
maximization models consider the cost functions for
the cost minimization models with the demand per unit
time related to the price per unit, (3) In deriving and

analyzing the optimal solutions, we employ geometric
programming (GP) technique as well as derivative
based classical first and second order conditions.

One of motivating factors for developing these two
models is the need to develop different cost functions
and demand functions that better model today’s
inventory problem by not having the fixed unit cost
and demand independent of the price as the EOQ
model does.

The cost minimization model can be applied to
companies which focus on the production (lot sizing).
The profit maximization model can be used in
functionally centralized firms where production (lot
sizing) and pricing (marketing) decisions can be made
at the same time. The second is the comparison of the
models and the relationship between the optimal
solutions that can be determined under certain
conditions. By comparing the models, we can derive
managerial insights and select an optimal inventory
policy.

GP has been very popular in engineering design
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research since its inception in the early 1960s. Even
though GP is an excellent method to solve nonlinear
problems, the use of GP in inventory models has been
relatively infrequent. Kochenberger (1971) was the
first to solve the basic EOQ model using GP. In
Worrall and Hall (1982), GP techniques were utilized
to solve an inventory model with multiple items
subject to multiple constraints. Cheng (1989) applied
GP to solve modified EOQ models and to perform
sensitivity analysis. Lee (1993) also illustrated the
usefulness of bounding and sensitivity analysis in the
profit maximization model.

There have been numerous publications on EOQ
models with fixed cost per unit. However, several
papers have relaxed the assumption of the fixed cost
per unit for the EOQ models since 1990s. For example,
Jung and Klein (2004) and Lee (1993, 1994) assumed
the cost per unit as a function of the order quantity.
This assumption means that the production exhibits
economies of scale when the order quantity increases.
In addition to cost, Kim and Lee (1998), Lee (1993,
1994), and Lee, Kim, and Cabot (1996) relaxed the
fixed demand per unit time and assumed the demand
per unit time is a function of the price per unit. That is,
the demand per unit time is assumed to be dependent
upon the price per unit.

In this paper, we compare the cost minimization
model to the profit maximization model and
investigate the difference in the optimal solutions. The
cost minimization criterion is most appropriate for
production departments of economic agents which are
provided with fixed budgets and no control over the
price of the final product.

In contrast, the profit maximization considers the
behavior of economic agents who are both sellers (the
price is to be determined) as well as producers of a
product. Hence, our comparison means that the
monopolistic market of the profit maximization model,
where the price is controllable, is compared with the
competitive market of the cost minimization model
where the price is given by the market. The difference
in the optimal order quantity of these models indicates
the quantity that is over ordered/under ordered due
to the error in estimating the cost function and the
price function of the models.

That is, it implies that we use the monopolistic
market (competitive market) when the competitive
market (monopolistic market) should have been used.
From our comparison, we provide the relationships
between the optimal order quantities by comparing our
cost functions without computing the optimal solutions.
This means that we can determine optimal inventory
policy by estimating the cost functions.

The remainder of this paper is organized as follows.
First, we present assumptions and the two models for

total cost minimization and profit maximization. We
then optimally determine the order quantity and the
price for our models. In the next section, we obtain the
optimality results using the first and second order
conditions. That is, the change in the optimal solutions
according to varied parameters is analyzed to see the
effect on inventory policy. Then, we compare and
contrast the cost minimization model and the profit
maximization model to gain managerial insights.
Finally, we make concluding remarks and comment on
future research areas.

2. Assumptions

We define the following variables and parameters for
our models.

P = price per unit (dollar/unit, decision variable for
maximization model)

Q = order quantity (units, decision variable for
minimization and maximization models)

D = demand per unit time (units/unit time)
C = cost per unit (dollar/unit)
A = ordering cost (dollar/batch)
i = inventory carrying cost rate (%/unit time)
a = scaling constant for D
d = scaling constant for C
α = price elasticity of demand
δ = quantity discount factor

Three assumptions, which are frequently found in
the EOQ literature, are used in this paper: (1)
replenishment is instantaneous; (2) no shortage is
allowed; (3) the order quantity is ordered in batch.

In addition, we assume that the cost per unit is a
power function of the order quantity displaying
quantity discounts for the minimization model. That is,

δ−= dQQC )( . For the maximization model, we assume
that δ−= dQQC )( and α−= aPPD )( . α−= aPPD )(
indicates that the demand per unit time is assumed to
be a decreasing power function of the price per unit.

3. Models

3.1 Minimization Model
Given the above definitions and assumptions, the

total cost per unit time (= TC(Q)) of the minimization
model is the sum of the ordering cost per unit time,
variable cost per unit time, and inventory holding cost
per unit time. Then, we have the following mathemati-
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cal formulations from the GP perspective.

Min TC(Q) = AD/Q + C(D, Q)D + iC(Q)Q/2
= δδ −−− ++ 11 5.0 idQDdQADQ (1)

The objective function of the minimization model is
an unconstrained posynomial with one degree of
difficulty. The development of the solution procedure
for this model is similar to the work by Cheng (1989,
1991). In the unconstrained posynomial GP problem,
the dual variable, iw , provides the weight of ith term
of the primal problem over Q by the following
equation.

)( *** wdwU ii = (2)

)( *wd is the optimal dual objective function and the
optimal weights, ,, *

2
*
1 ww and, *

3w represent
proportions of the setup cost ( *

1U ), the variable cost
( *

2U ), and the inventory holding cost ( *
3U ) to the total

cost per unit time, respectively. We then have the
following relations for our models.

[ ] 1**
1

−
= QADU , [ ] δ−

= **
2 QdDU , [ ] δ−

=
1**

3 5.0 QidU (3)

The optimal weights can be calculated from the dual
problem and the substituted dual problem using GP
technology(Cheng (1991) and Jung and Klein (2004)).
Then, the corresponding primal solutions can be
obtained from equation (3) (see Appendix).

[ ] δ/1**
2

**
1

* ))((/))((/ wdwdDwdwADQ ==

[ ] )1(/1**
3 )5.0(/)((

δ−
= idwdw (4)

3.2 Maximization Model
Under the above definitions and assumptions, the

profit per unit time (= ),( QPπ ) of the maximization
model is the revenue per unit time minus the sum of
the above total cost per unit time. Then, we have the
following mathematical formulations for the profit per
unit time.

Max ),( QPπ = PD(P) [AD(P)/Q + C(Q)D(P)
+ iC(Q)Q/2]

= δααα −−−−− −− QadPQAaPaP 11

δ−− 15.0 idQ (5)

The development of the solution procedure for the

maximization model is found in Lee (1993). The
objective function, equation (5), is a signomial
problem with one degree of difficulty. Although global
optimality is not guaranteed for a signomial problem,
the profit function can be transformed into a
posynomial problem with one additional variable and
constraint. This technique was developed by Duffin,
Peterson, and Zener (1976). In the constrained
posynomial GP problem, the dual feasible solutions,

λω andi , provide the weights of the terms in the
constraints of transformed primal problem by the
following equation.

4,3,2,1,/ == iV ii λω (6)

∑∑
==

==
4

1

4

1

and1where
i

i
i

iV ωλ

These weights represent proportions of the profit
( 1V ), the ordering cost ( 2V ), the variable cost ( 3V ),
and the inventory holding cost ( 4V ) to the total
revenue. We then have the following relations for our
models.

zPaV 11
1

−−= α , 11
2

−−= QAPV ,
δ−−= QdPV 1

3 , δα −−−= 111
4 5.0 QdPiaV (7)

From the above equations, the corresponding primal
solution can be obtained (see Appendix).

[ ] )]1/(1[
32 /

δδδ −−= VdVAP

[ ][ ])1/(1
342 )5.0(/ −= αidAVVadV

[ ] )]1(/1[
23 )/( δ−= dVAVQ

[ ]
δ

δαδδ

δα −

−−−

−−














=

1
1

)1/()1(
2

)1/()1(
34

5.0 dVAid

VaV
(8)

The optimal weights are computed from the dual
problem and the substituted dual problem, and

** and QP are calculated from equation (8).
According to the duality theorem of GP, we can obtain

*π from the relationship )()/1( ** ωdz = where *π =
*z = Max z. Therefore, )(/1 ** ωπ d= . Also, *π can

be obtained from the profit function (5) after
** and QP are substituted.
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4. Optimality Results

4.1 Minimization Model
From the first and second derivatives of the optimal

order quantity and the optimal total cost, we
investigate the changes in *Q and *TC according to
varied parameters, A, i, d, D, and δ . Since the closed
form solutions can not be obtained, we use the implicit
function theorem (see e.g., Hildebrand (1976)) with
the first and second order conditions.

The first and second order conditions for the global
optimality from the total cost function (1) are

0)1(
2
112 =−+−−=

∂
∂ −−−− δδ δδ idQdDQADQ

Q
TC (9)

δδδ −−− ++=
∂
∂ 23

2

2
)1(2 dDQADQ

Q
TC

0)1(
2
1 1 >−− −− δδδ idQ (10)

First, we investigate the change of the optimal order
quantity as the ordering cost A varies. From the first
order condition, (9), using the implicit function
theorem, we have

[ ] [ ] [ ]
A

Q
QdD

A
Q

QADQD
∂
∂

++
∂
∂

+−
−−−− *2*

*3*2* )1(2
δ

δδ

[ ] 0)1(
2
1 *1* =

∂
∂

−−
−−

A
QQid

δ
δδ (11)

Equation (11) can be expressed by

[ ]
[ ] [ ] [ ] δδ

δδδδ
−−−−−

−

−−++
=

∂
∂

1*2*3*

2**

)1(
2
1)1(2 QidQdDQAD

QD
A

Q

(12)

By applying (10) to (12), we obtain the following
result.

0
*
>

∂
∂

A
Q

(13)

From the second derivative of (12), we can also
obtain

=
∂
∂

2

*2

A
Q

[ ] [ ] [ ]

[ ] [ ] [ ]
2

1*2*3*

1*2*
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1
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Q
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Equation (13) and (14) indicate that the optimal
order quantity is an increasing and concave function
with respect to the ordering cost A.

For the total cost, we can apply the above procedure
and obtain

0
*
>

∂
∂

A
TC

,
02

*2
<

∂
∂

A
TC

(15)

The following results for i, d, D, and δ are obtained
by similar procedures shown for A.

0,0 2

*2*
>

∂
∂<

∂
∂

i
Q

i
Q

,
0,0 2

*2*
<

∂
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∂
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i
TC
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TC

(16)

0,0 2

*2*
>
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Q
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0,0 2
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<

∂
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∂
∂
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(17)

0
*
>

∂
∂

D
Q

(18)

0
*
>

∂
∂
δ

Q
(19)

The above results indicate that any increase
(decrease) in A or decrease (increase) in i or d results
in a larger (smaller) optimal order quantity, and any
increase (decrease) in A, i, or d results in a larger
(smaller) optimal total cost.

Any increase in A leads to higher inventory cost and
therefore, at the same time, to higher *Q and *TC . If
the inventory holding cost, i, which is the part of total
cost, increases, total cost increases. In this case, a
decision maker will reduce *Q to save the expense of
storing inventory. The fact that when we increase the
scaling constant for C, *Q decreases represents that if
the cost per unit is increased by scaling constant, *Q
will be decreased because of economies of scale.

4.2 Maximization Model

For this model, the changes in *Q , *P , and *π
according to the changes in the parameters, i, a, d, α ,
and δ are investigated by the computational analysis.
For the experiment, we use the basic parameter values:
A = 50, i = 0.1, a = 500000, f = 5, α = 2.5, and δ =
0.2. The values of the parameters to analyze with
optimal solutions are allowed to vary ± 10 %, ± 20 %,
± 30 %, , ± 90 %, ± 100 % for A, i, a, d, ± 1 %, ±
2 %, ± 3 %, , ± 9 %, ± 10 % for α , and ± 5 %, ±
10 %, ± 15 %, , ± 45 %, ± 50 % for δ .

The computational results for the changes in the
optimal solutions according to the changes in the
inventory holding cost, the scaling constant for
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demand, and the scaling constant for unit cost is shown
in <Figure 1>, <Figure 2> and <Figure 3> respectively.

<Figure 1> indicates that any increase (decrease) in
inventory holding cost, i, results in a smaller (larger)
optimal order quantity, a higher (lower) optimal price,
and lower (higher) optimal profit. If the inventory
holding cost, i, which is the part of total cost, is
increased, total cost will be increased and therefore
profit will be reduced. In this case, a decision maker
will reduce *Q to save the expense of storing
inventory. From <Figure 2>, we can observe that price

is reduced as a increases since a is a constant for
demand and demand is a decreasing function of price.
This results in higher profit and order quantity from
the increased demand. <Figure 3> shows that *Q and

*π decrease ( *P increases) when we increase the
scaling constant for C. This represents that if the cost
per unit is increased by the scaling constant, *Q will
be decreased because of economies of scale. Increases
in unit cost will lead to higher total cost and price, and
hence, lower profit.

Figure 1. Changes in the order quantity (a), the price (b), and the profit (c)
with respect to change in the inventory holding cost.

Figure 2. Changes in the order quantity (a), the price (b), and the profit (c)
with respect to change in the scaling constant for demand.

Figure 3. Changes in the order quantity (a), the price (b), and the profit (c)
with respect to change in the scaling constant for the unit cost.
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5. Comparative Analysis

The comparative analysis here is to study the relation-
ship between the optimal solutions of the maximization
model and the minimization model. The maximization
model is a monopolistic market because the model can
control both price and demand. However, the minimi-
zation model is a competitive market which means that
the price is given in the market. Hence, by investiga-
ting the difference in the optimal order quantity of the
maximization model and the minimization model, we
can observe interesting managerial insights. We denote

)and,,(and,, pppccc DQCDQC as the cost per unit,
the order quantity, and the demand per unit time of the
minimization model (maximization model), respecti-
vely. Also, the asterisk sign means that the value is
optimal. We assume that the following parameters are
identical for both models: A, i, d, and δ .

We investigate the error, **
pc QQ − , by comparing

*Q ’s of the maximization model and the minimization
model where certain conditions in the demand per unit
time are given. Also, the optimal order quantities of
both models are compared where certain conditions in
the cost per unit are given. We use the first derivative
of the total cost and the profit with respect to the order
quantity to compare ** and pc QQ .

From the first derivative of the total cost in the
minimization model and the first derivative of the
profit in the maximization model, and using

α−= pp aPD , we have

[ ] [ ]
[ ] δ

δ
δ
−

−−−
+

*

1*2*
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cccc

Qd

QdDQAD

[ ] [ ]
[ ] i
Qd

QdDQAD

p

pppp )1(5.0
*

1*2*

δ
δ

δ

δ

−=
+

= −

−−−

(20)

By manipulating (20), we have the following
relationship.

[ ] [ ]
[ ] [ ] 1*2*

1*2*

−+−

−+−

+

+
=

cc

pp

p

c

QdQA

QdQA
D
D

δ

δ
δ

δ

(21)

Equation (21) can be used to compare the optimal
order quantities in both models for the cases:

,, ****
pcpc QQQQ <> and

**
pc QQ = under the three

conditions pc DD > , pc DD < , and pc DD > . If
pc DD > , then the right hand side of (21) should be

less than 1. This implies **
pc QQ < since [ ] δ+−2*

cQ and

[ ] 1* −
cQ should be greater than [ ] δ+−2*

pQ and [ ] 1* −
pQ ,

respectively, to satisfy pc DD > where 0 < δ < 1.
With the similar approach, we can obtain the following
property under the three conditions.

Property 1.a **, pcpc QQthenDDIf >> .
1.b **, pcpc QQthenDDIf << .
1.c **, pcpc QQthenDDIf == .

Property 1.a and 1.b indicate that cD is maximum
and minimum boundary point of pD , respectively.
The difference in the optimal order quantity implies
the quantity that is over ordered/under ordered.
Property 1 shows that we can determine optimal
inventory policy by estimating pD (we assume that we
have previous data of pD ) without computing *

cQ and
*
pQ . To estimate the demand function for the model,

we first estimate α by applying simple linear
regression with previous data for D and P, and then
estimate the demand function using α . The estimation
of the demand function gives us the relationship
between *

cQ and
*
pQ .

The cost minimization model is appropriate for
production departments of economic agents with fixed
budgets, and the profit maximization model considers
both of production and pricing. Hence, decision maker
can apply the above property to choose the better
model in certain circumstances whether he wants to
focus on both of lot sizing and marketing or he
considers only lot sizing. That is, by estimating
demand function of maximization model from the
previous data, he can adjust the error of the optimal
solutions to produce an optimal policy.

From [ ] [ ] ppcc CQdCQd ==
−− δδ ** and , equation (21)

becomes

[ ] [ ]
[ ] [ ] δδ

δδ

δ

δ
+−+−

+−+−

+

+
= 1*2*

1*2*

ccc

ppp

p

c

QCQA

QCQA
D
D

(22)

Using (22), we can examine all the cases *
cQ >

,, ***
pcp QQQ < and

**
pc QQ = under the three conditions,

,, pcpc CCCC <> and pc CC = . This yields
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Property 2.a. **, pcpcpc QQandDDthenCCIf <<>

2.b **, pcpcpc QQandDDthenCCIf >>< .
2.c **, pcpcpc QQandDDthenCCIf === .

Property 2 indicates that if cC and pC can be
estimated, the relationship between cC and pC as
well as the relationship between *

cQ and
*
pQ can be

analyzed. To estimate the cost function for both
models, we first assume that we have previous data for
C and Q. Then, for the cost function, δ−= 11 dQC ,

δ−= 22 dQC , , δ−= nn dQC , we can estimate δ by
taking the logarithm to transform the cost function into
a linear model and then apply simple linear regression.
Hence, the estimation of cC and pC gives us the
relationship between *

cQ and
*
pQ as well as maximum

and minimum boundary point of pD . Property 2
indicates that we can determine optimal inventory
policy from cC and pC without computing optimal
solutions if the difference in the optimal solutions is
found. For example, that is, if we know **

pc QQ > (i.e.,
*
cQ is over ordered or *

pQ is under ordered) from
pc CC < , we can increase cC (or decrease pC ) to

reduce the error in the optimal order quantity. This
adjustment will give us optimal policy for our models.

6. Conclusions

In this paper, we analyzed two EOQ based inventory
models under total cost minimization and profit
maximization via geometric programming (GP)
techniques. We compared and contrasted our models
and determined optimal inventory policies without
computing solutions. This gave us interesting
managerial implications. In addition, we performed
optimality analysis to investigate the effects of the
changes in the optimal solutions according to the
changes in parameters.

The two models we have investigated may provide
the basis for numerous further research areas. These
models can be a basis for inventory models integrated
with quality, setup cost, and process improvement
issues (see e.g., Cheng (1989, 1991)). Due to the
suitability of GP for dealing with exponential
functions, we can apply these to more comprehensive
model, where the effects of marketing mix variables

such as advertising and promotion activities on
demand are represented by an exponential function.
We can also extend our models to the multi product
case where the nonlinear interactions among related
products with respect to their demands are taken into
account.

Appendix

For the minimization model, we use the following
dual problem to solve our problem.

Max [ ] [ ] [ ] 321
321 /5.0//)( www widwdDwADwd = (A.1)

s. t. 1321 =++ www

0)1( 321 =−+−− www δδ (A.2)
0,, 321 >www

There are not enough equations to determine the
optimal weights since we have two linear equations
and three variables (i.e., under determined). However,
we can express the weights, 321 oftermsin,and www .

)1(/))2(1(
)1(/)(

32

31

δδ
δδ

−−−=
−+−=

ww
ww

(A.3)

The normality condition in conjunction with the dual
variables being positive yields 1,,0 321 << www . By
substituting (A.3) into 1,,0 321 << www , we have the
following conditions.

)2(/1)2(/
1

3

3

δδδ
δ

−<<−
<<

w
w

(A.4)

From (A.3), if 1≥δ , then δ≤3w and
)2(/13 δ−≥w to satisfy the positivity condition of the

dual variables. But, this does not coincide with (A.4).
Hence, we know that the dual problem is infeasible if

1≥δ , ,3 δ≤w and )2(/13 δ−≥w . Therefore, the
positivity condition is

)2(/1and,,10 33 δδδ −<><< ww (A.5)

After combining (A.4) and (A.5), we can obtain the
following dual feasibility condition.

Lemma 1. (Dual feasibility condition for minimization
model)

If ,10),2(/)1(0,10 21 <<−−<<<< ww δδδ and
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δ < )2(/13 δ−<w , then the dual problem is feasible.

The condition 0 < δ < 1 has been used by Arcelus
and Srinivasan (1985, 1988), Jung and Klein (2004),
and Lee (1993, 1994). We will focus on the cases
where the discount factor is relatively small.

Since the model has one degree of difficulty, we can
solve this with the following substituted dual function,

)( 3wd , to find an optimal solution. By substituting
(A.3) into the dual objective function (A.1), where 3w
is the only variable, the substituted dual problem is
formed.

Max )( 3wd =
[ ][ ][ ])1(/)(

3
3)1(/)(/ δδδδ −+−−+− wwAD

[ ][ ][ ][ ] 33
3

)1(/))2(1(
3 /5.0)1(/))2(1(/ ww widwdD δδδδ −−−−−− (A.6)

By taking the logarithm of the objective function of
the substituted dual problem, we obtain the following
concave function in one variable. Because constraints
of the dual problem are linear, these constraints form a
convex region. Therefore, the dual problem is to find a
stationary point for the concave objective function
subject to the set of convex constraints. This function
has a guaranteed global optimal solution. The proof of
the concavity of log )( 3wd is shown by Duffin,
Peterson, and Zener (1976).

)(logMax 3wd =
[ ] [ ][ ])1(/)(log)1(/)( 33 δδδδ −+−−+−− ADww
[ ][ ] [ ] [ ][ ])1(/)2(1log)1(/)2(1 33 δδδδ −−−−−−− dDww

[ ])5.0(/log 33 idww− (A.7)

Setting the first derivative to zero
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Equation (A.8) can be easily maximized by any line
search technique. After the optimal weight *

3w is
obtained from (A.8), *

2
*
1 and ww can be calculated

from (A.3). After applying GP to solve the minimiza-
tion primal problem expressed in (1), we can obtain
the optimal order quantity from the following
relationship.

[ ] *
1

1*
2

*
3

*
3

*
2

*
2

*
1

*
1 //// wQADwUwUwU

−
===

[ ] [ ] *
3

1*
2

*
2

*
2 /5.0/ wQidwQdD

δδ −−
== (A.9)

For the maximization model, we rewrite the
unconstrained signomial problem, equation (5), to
demonstrate the transformation as follows:

Max z
s. t. zidQQadPQAaPaP ≥−−− −−−−−− δδααα 111 5.0 (A10)

which is equivalent to the following transformed
primal problem

Min 1−z
s. t. δα −−−−−− ++ QdPQAPzPa 11111

15.0 111 ≤+ −−− δα QdPia (A.11)

This transformed primal function is a constrained
posynomial problem with one degree of difficulty
which is guaranteed to have a global optimal.

Instead of dealing with (A.11) to obtain the solution,
we use the following dual problem which is usually
easier to solve.

Max [ ] [ ] [ ] 210
21

1
0 ///1)( ωωω ωλωλωω Aad −=

[ ] [ ] 43
4

1
3 /5.0/

ωω ωλωλ diad −
(A.12)

s. t. 10 =ω
010 =+− ωω

0)1()1( 4321 =−+−−− ωαωωωα (A.13)
0)1( 432 =−+−− ωδδωω

4,3,2,1,00 => iforiω

where 4321 ωωωωλ +++=

From (A.13), we can express 3210 ,,, ωωωω , and λ
in terms of 4ω .

110 == ωω
[ ] )1(/)1()1( 42 δωαδαδω −−+−=
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[ ] )1(/)2(1 43 δωδααω −−++−= (A.14)
4αωαλ +=

From our assumption 0 < δ < 1 and the positivity
condition ( 0>iω ), we know that the dual problem is
infeasible if 1and1 ≥≥ αδα (in this case, 2ω can not
be positive) or if 2and1 ≤+≤ δαα (in this case, 3ω
can not be positive). Hence, the following dual
feasibility condition is true.

Lemma 2 (Dual feasibility condition for maximization
model)

If 1>α , 1<αδ , 10 << δ , and 10 <<< αδ , then
the dual problem is feasible.

The price elasticity of the demand per unit time, α ,
represents the relative change in the demand with
respect to the corresponding relative change in the
price. Our assumption α > 1 is a mild one since α <
1 implies that the price per unit has little impact on the
demand per unit time. The condition δα > indicates
that the price elasticity with respect to the demand is
greater than the cost elasticity with respect to the order
quantity. The condition 0 < δ < 1 will be assumed for
this model since any δ > 1 represents too much
discounting and would be unrealistic.

The optimal solution procedure is similar to the
minimization model.
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