DOI QR코드

DOI QR Code

Solution Structure of YKR049C, a Putative Redox Protein from Saccharomyces cerevisiae

  • Jung, Jin-Won (Department of Biochemistry and Protein Network Research Center, Yonsei University) ;
  • Yee, Adelinda (Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto) ;
  • Wu, Bin (Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto) ;
  • Arrowsmith, Cheryl H. (Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto) ;
  • Lee, Weon-Tae (Department of Biochemistry and Protein Network Research Center, Yonsei University)
  • 발행 : 2005.09.30

초록

YKR049C is a mitochondrial protein in Saccharomyces cerevisiae that is conserved among yeast species, including Candida albicans. However, no biological function for YKR049C has been ascribed based on its primary sequence information. In the present study, NMR spectroscopy was used to determine the putative biological function of YKR049C based on its solution structure. YKR049C shows a well-defined thioredoxin fold with a unique insertion of helices between two $\beta$-strands. The central $\beta$-sheet divides the protein into two parts; a unique face and a conserved face. The 'unique face' is located between ${\beta}2$ and ${\beta}3$. Interestingly, the sequences most conserved among YKR049C families are found on this 'unique face', which incorporates L109 to E114. The side chains of these conserved residues interact with residues on the helical region with a stretch of hydrophobic surface. A putative active site composed by two short helices and a single Cys97 was also well observed. Our findings suggest that YKR049C is a redox protein with a thioredoxin fold containing a single active cysteine.

키워드

참고문헌

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. and McCammon, J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041 https://doi.org/10.1073/pnas.181342398
  3. Bax, A., Vuister, G. W., Grzesiek, S., Delaglio, F., Wang, A. C., Tschudin, R. and Zhu, G. (1994) Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79-105 https://doi.org/10.1016/S0076-6879(94)39004-5
  4. Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography and NMR system (CNS): a new software suite for macromolecular structure determination. Acta Crystallogr. 54, 905-921 https://doi.org/10.1107/S0108767398011465
  5. Cornilescu, G., Delaglio, F. and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302 https://doi.org/10.1023/A:1008392405740
  6. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293
  7. Goddard, T. D. and Kneller, D. G. SPARKY 3, University of California, San Francisco
  8. Hermann, T., Guntert, P. and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209-227 https://doi.org/10.1016/S0022-2836(02)00241-3
  9. Holm, L. and Sander, C. (1993) Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123-138 https://doi.org/10.1006/jmbi.1993.1489
  10. Holmgren, A. (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3, 239-243 https://doi.org/10.1016/S0969-2126(01)00153-8
  11. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686-691 https://doi.org/10.1038/nature02026
  12. Kay, L. E. (1997) NMR methods for the study of protein structure and dynamics. Biochem. Cell. Biol. 75, 1-15 https://doi.org/10.1139/bcb-75-1-1
  13. Kim, S. H. (1998) Shining a light on structural genomics. Nat. Struct. Biol. 5, 643 https://doi.org/10.1038/1334
  14. Koradi, R., Billeter, M. and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51-55 https://doi.org/10.1016/0263-7855(96)00009-4
  15. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R. and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477-486
  16. Linge, J. P., Williams, M. A., Spronk, A. E. M., Bonvin, A. M. and Nilges, M. (2003) Refinement of protein structures in explicit solvent. Proteins 50, 496-506 https://doi.org/10.1002/prot.10299
  17. Martin, J. L. (1995) Thioredoxin - a fold for all reasons. Structure 3, 245-250 https://doi.org/10.1016/S0969-2126(01)00154-X
  18. Martin, P., DeMel, S., Shi, J., Gladysheva, T., Gatti, D. L., Rosen, B. P. and Edwards, B. F. P. (2001) Insights into the structure, salvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9, 1071-1081 https://doi.org/10.1016/S0969-2126(01)00672-4
  19. Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Forman-Kay, J. D. and Kay, L. E. (1994) Simultaneous acquisition of 15Nedited and 13C-edited NOE spectra of proteins dissolved in $H_2O$. J. Magn. Reson. 103, 197-201 https://doi.org/10.1006/jmrb.1994.1031
  20. Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E., Schonfisch, B., Perschil, I., Chacinska, A., Guiard, B., Rehling, P., Pfanner, N. and Meisinger, C. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100, 13207-13212
  21. Yee, A., Chang, X., Pineda-Lucena, A., Wu, B., Semesi, A., Le, B., Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P., Denisov, A., Lee, C. H., Cort, J. R., Kozlov, G., Liao, J., Finak, G., Chen, L., Wishart, D., Lee, W., McIntosh, L. P., Gehring, K., Kennedy, M. A., Edward, A. M. and Arrowsmith, C. H. (2002) An NMR approach to structural proteomics. Proc. Natl Acad. Sci. USA 99, 1825-1830
  22. Zimmerman, D. E., Kulikowski, C. A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, S., Chien, C., Powers, R. and Montelione, G. T. (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269, 592-610 https://doi.org/10.1006/jmbi.1997.1052

피인용 문헌

  1. TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses vol.56, pp.1, 2010, https://doi.org/10.1007/s00294-009-0280-8
  2. Structural Basis for Telomerase RNA Recognition and RNP Assembly by the Holoenzyme La Family Protein p65 vol.47, pp.1, 2012, https://doi.org/10.1016/j.molcel.2012.05.018
  3. Structural proteomics by NMR spectroscopy vol.5, pp.4, 2008, https://doi.org/10.1586/14789450.5.4.589
  4. Solution structure and dynamics of ADF from Toxoplasma gondii vol.176, pp.1, 2011, https://doi.org/10.1016/j.jsb.2011.07.011
  5. Structural biology of human cannabinoid receptor-2 helix 6 in membrane-mimetic environments vol.384, pp.2, 2009, https://doi.org/10.1016/j.bbrc.2009.04.099
  6. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, inEscherichia coli vol.22, pp.9, 2013, https://doi.org/10.1002/pro.2314
  7. Structure and mechanism of the primosome protein DnaT- functional structures for homotrimerization, dissociation of ssDNA from the PriB·ssDNA complex, and formation of the DnaT·ssDNA complex vol.281, pp.23, 2014, https://doi.org/10.1111/febs.13080
  8. Quantitative Profiling for Substrates of the Mitochondrial Presequence Processing Protease Reveals a Set of Nonsubstrate Proteins Increased upon Proteotoxic Stress vol.14, pp.11, 2015, https://doi.org/10.1021/acs.jproteome.5b00327
  9. Solution structure and dynamics of ADF/cofilin from Leishmania donovani vol.172, pp.3, 2010, https://doi.org/10.1016/j.jsb.2010.07.001
  10. Solution structures and dynamics of ADF/cofilins UNC-60A and UNC-60B fromCaenorhabditis elegans vol.465, pp.1, 2015, https://doi.org/10.1042/BJ20140923