The Phosphorylation Status of Merlin Is Important for Regulating the Ras-ERK Pathway

  • Jung, Ju Ri (Department of Neurosurgery, The Catholic University of Korea) ;
  • Kim, Hongtae (Department of Oncology Research, Mayo Clinic) ;
  • Jeun, Sin-Soo (Department of Neurosurgery, The Catholic University of Korea) ;
  • Lee, Joo Yong (Department of Neurosurgery, The Catholic University of Korea) ;
  • Koh, Eun-Jeoung (Department of Neurosurgery, Chonbuk National University Medical School) ;
  • Ji, Cheol (Department of Neurosurgery, The Catholic University of Korea)
  • 투고 : 2005.03.14
  • 심사 : 2005.06.23
  • 발행 : 2005.10.31

초록

The neurofibromatosis type2 (NF2) tumor suppressor gene product, merlin, is structurally related to the ezrin-radixin-moesin (ERM) family of proteins that anchor the actin cytoskeleton to specific membrane proteins and participate in cell signaling. However, the basis of the tumor suppressing activity of merlin is not well understood. Previously, we identified a role of merlin as an inhibitor of the Ras-ERK signaling pathway. Recent studies have suggested that phosphorylation of merlin, as of other ERM proteins, may regulate its function. To determine whether phosphorylation of merlin affects its suppression of Ras-ERK signaling, we generated plasmids expressing full-length merlin with substitutions of serine 518, a potential phosphorylation site. A substitution that mimics constitutive phosphorylation (S518D) abrogated the ability of merlin to suppress effects of the Ras-ERK signaling pathway such as Ras-induced SRE transactivation, Elk-mediated SRE transactivation, Ras-induced ERK phosphorylation and Ras-induced focus formation. On the other hand, an S518A mutant, which mimics nonphosphorylated merlin, acted like wild type merlin. These observations show that mimicking merlin phosphorylation impairs not only growth suppression by merlin but also its inhibitory action on the Ras-ERK signaling pathway.

키워드

참고문헌

  1. Alfthan, K., Heiska, L., Gronholm, M., Renkema, G. H., and Carpen, O. (2004) Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21- activated kinase and promotes merlin-ezrin heterodimerization. J. Biol. Chem. 279, 18559-18566 https://doi.org/10.1074/jbc.M313916200
  2. Baser, M. E., Evans, D. G., and Gutmann, D. H. (2003) Neurofibromatosis 2. Curr. Opin. Neurol. 16, 27-33 https://doi.org/10.1097/00019052-200302000-00004
  3. Bretcher, A., Edwards, K., and Fehon, R. G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell. Biol. 3, 586-599 https://doi.org/10.1038/nrm882
  4. Dalton, S. and Treisman, R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68, 597-612 https://doi.org/10.1016/0092-8674(92)90194-H
  5. Gonzalez-Agosti, C., Wiederhold, T., Herndon, M. E., Gusella, J., and Ramesh, V. (1999) Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHERF. J. Biol. Chem. 274, 34438-34442 https://doi.org/10.1074/jbc.274.48.34438
  6. Gronholm, M., Sainio, M., Zhao, F., Heiska, L., Vaheri, A., and Carpen, O. (1999) Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin, J. Cell Sci. 112, 895-904
  7. Gutmann, D. H., Geist, R. T., Xu, H., Kim, J. S., and Saporito- Irwin, S. (1998) Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum. Mol. Genet. 7, 335-345 https://doi.org/10.1093/hmg/7.3.335
  8. Gutmann, D. H., Haipek, C. A., and Hoang Lu, K. (1999) Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. J. Neurosci. Res. 58, 706-716 https://doi.org/10.1002/(SICI)1097-4547(19991201)58:5<706::AID-JNR12>3.0.CO;2-Z
  9. Kim, H., Lim, J. Y., Kim, Y. H., Kim, H., Park, S. H., et al. (2002) Inhibition of Ras-mediated activator protein 1 activity and cell growth by merlin. Mol. Cells 14, 108-114
  10. Kissil, J. L., Johnson, K. C., Eckman, M. S., and Jacks, T. (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem. 277, 10394-10399 https://doi.org/10.1074/jbc.M200083200
  11. Lim, J. Y., Kim, H., Kim, Y. H., Kim, S. W., Huh, P. W., et al. (2003) Merlin suppresses the SRE-dependent transcription by inhibiting the activation of Ras-ERK pathway. Biochem. Biophys. Res. Commun. 302, 238-245 https://doi.org/10.1016/S0006-291X(03)00124-4
  12. Morrison, H., Sherman, L. S., Legg, J., Banine, F., Isacke, C., et al. (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 15, 968-980 https://doi.org/10.1101/gad.189601
  13. Nguyen, R., Reczek, D., and Bretcher, A. (2001) Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem. 276, 7621-7629 https://doi.org/10.1074/jbc.M006708200
  14. Rouleau, G. A., Merel, P., Lutchman, M., Sanson, M., Zucman, J., et al. (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 10, 515-521 https://doi.org/10.1038/010515a0
  15. Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726-735
  16. Shaw, R. J., Paez, J. G., Curto, M., Yaktine, A., Pruitt, W. M., et al. (2001) The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 1, 63-72 https://doi.org/10.1016/S1534-5807(01)00009-0
  17. Sherman, L., Xu, H. M., Geist, R. T., Saporito-Irwin, S., Howells, N., et al. (1997) Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15, 2505-2509 https://doi.org/10.1038/sj.onc.1201418
  18. Trofatter, J. A., MacCollin, M. M., Rutter, J. L., Murrell, J. R., Duyao, M. P., et al. (1993) A novel moesin-, ezrin-, radixinlike gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 12, 791-800
  19. Tsukita, S. and Yonemura, S. (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell. Biol. 9, 70-75 https://doi.org/10.1016/S0955-0674(97)80154-8
  20. Vanhoutte, P., Nissen, J. L., Brugg, B., Gaspera, B. D., Besson, M. J., et al. (2001) Opposing roles of Elk-1 and its brainspecific isoform, short Elk-1, in nerve growth factorinduced PC12 differentiation. J. Biol. Chem. 276, 5189-5196 https://doi.org/10.1074/jbc.M006678200
  21. Yang, S. H., Whitmarsh, A. J., Davis, R. J., and Sharrocks, A. D. (1998) Differential targeting of MAP kinas to the ETSdomain transcription factor Elk-1. EMBO J. 17, 1740-1749 https://doi.org/10.1093/emboj/17.6.1740