DOI QR코드

DOI QR Code

Genetic Variation of H-FABP Gene and Association with Intramuscular Fat Content in Laiwu Black and Four Western Pig Breeds

  • Zeng, Y.Q. (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Wang, G.L. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Wang, C.F. (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Wei, S.D. (Station of Popularization of Animal Science and Veterinary Technology of Laiwu) ;
  • Wu, Y. (Institute of Animal Science, Shandong Academy of Agricultural Sciences) ;
  • Wang, L.Y. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Wang, H. (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Yang, H.L. (College of Animal Science and Technology, Shandong Agricultural University)
  • Received : 2004.02.04
  • Accepted : 2004.07.02
  • Published : 2005.01.01

Abstract

This study was performed to detect genetic variation of the heart fatty acid-binding protein (H-FABP) gene by PCRRFLPs approach and its association with intramuscular fat (IMF) content. Data from 223 individuals, including one Chinese native pig breed and four western pig breeds, were analyzed. The results showed that for the H-FABP gene, there was one polymorphic HinfI site in the 5'-upstream region, whereas there were one HaeIII and one HinfI (marked as $HinfI^*$) polymorphic site in the second intron, respectively. The three PCR-RFLPs were present in all breeds tested. The allele frequencies, however, revealed significant differences between them (p<0.05). Furthermore, the allele frequency distribution of HinfI in the Laiwu Black and that of $HinfI^*$ in the Hampshire breed were at disequilibrium, which might be the result of selective breeding. Results also indicated that for HinfI, HaeIII and $HinfI^*$ HFABP RFLP, significant (p<0.05) contrasts of 0.78%, -0.69% and 0.72% were detected in the least square means of IMF content between the homozygous genotype HH and hh, DD and dd, BB and bb classes, respectively. It implied that the HHddBB genotype had the highest IMF content in this experimental population and these H-FABP RFLPs could serve, to some extent, as genetic markers for use in improvement of IMF content.

Keywords

References

  1. Bo Zuo, Yuan Zhu Xiong, Yu Hong Su, Chang Yan Deng, Rong Zheng and Si Wen Jiang. 2003. Mapping quantitative trait loci for meat quality on pig chromosome 3, 4 and 7. Asian-Aust. J. Anim. Sci. 16(3):320-324.
  2. Chu, M. X., J. Z. Wang, A. G. Wang, N. Li and J. L. Fu. 2003. Association analysis between five microsatellite loci and litter size in Small Tail Han sheep. Asian-Aust. J. Anim. Sci. 16(11):1555-1559.
  3. Chu, M. X., C. L. Ji and G. H. Chen. 2003b. Association between PCR-RFLP of melatonin receptor 1a gene and high prolificacy in Small Tail Han sheep. Asian-Aust. J. Anim. Sci. 16(12): 1701-1704.
  4. De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. Van Oers, B. J. De Vries, M. A. M. Groenen, J. J. Vander Poel, P. J. De Groot, E. W. Brascamp and J. A. M. Van Arendonk. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152:1679-1690.
  5. DeVol, D. L., F. K. McKeith, P. J. Bechtel, J. Novakofski, R. D. Shanks and T. R. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395.
  6. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to quantitative genetics, 4th ed. Essex, England: Longman Group. pp. 1-19.
  7. Gerbens, F., G. Rettenberger, J. A. Lenstra, J. H. Veerkamp and M. F. W. Te Pas. 1997. Characterization, chromosomal localization and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome. 8:328-332.
  8. Gerbens, F., A. J. M. Van Erp, F. L. Harders, F. J. Verburg, T. H. E. Meuwissen, J. H. Veerkamp and M. F. W. Te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852.
  9. Hovenier, R., E. Kanis, T. Van Asseldonk and N. G. Westerink. 1992. Genetic parameters of pig meat quality traits in a halothane negative population. Livest. Prod. Sci. 32:309-321.
  10. Janss, L. L. G., J. A. M. Van Arendonk and E. W. Brascamp. 1997. Bayesian statistical analyses for presence of single genes affecting meat quality traits in a crossed pig population. Genetics 145:395-408.
  11. Jiang, Y. L., N. Li, X. Z. Fan, L. R. Xiao, R. L. Xiang, X. X. Hu, L. X. Du and C. X. Wu. 2002. Associations of T$\rightarrow$A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. Asian-Aust. J. Anim. Sci. 15(11):1543-1545.
  12. Lin, W. H., L. S. Huang, J. Ren, S. H. Deng, W. J. Wang, B. S. Liu, L. H. Zhou and C. Y. Chen. 2002. Research on genetic variation of heart fatty acid-binding protein gene in ten pig breeds. Acta. Genetics Sinica. 29:12-15.
  13. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Gene. Sel. Evol. 28:161-176.
  14. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  15. SAS. 1990. SAS Procedures Guide (Version 6). SAS Institute Inc. Cary, NC, USA.
  16. Veerkamp, J. H. and R. G. H. J. Maatman. 1995. Cytoplasmic fatty acid binding proteins: their structure and genes. Prog. Lipid. Res. 34:17-52.
  17. Wood, J. D., M. Enser, C. B. Moncrieff and A. J. Kempster. 1988. Effects of carcass fatness and sex on the composition and quality of pig meat. Proc. 34th Int Congr Meat Sci. Tech. Brisbane, Australia, pp. 562-564.
  18. Zeng, Y. Q. and Y. M. Sun. 1989. Effects of intramuscular fat and other chemical properties on meat quality of Laiwu swine. J. Shandong Agric. Univ. 4:57-61.
  19. Zeng, Y. Q., Y. M. Sun, W. F. Zhang, H. Wang and T. S. Li. 1998. Studies on relationship of muscle histological characteristics to meat quality of Laiwu swine. Chinese J. Anim. Vet. Sci. 29:486-492.
  20. Zhang, G. X., H. H. Cao, L. X. Wang, H. B. Li and Y. M. Zheng. 2002. Genetic variation in 5'-upstream region and the second intron of H-FABP gene in nine pig breeds. Chinese J. Anim. Vet. Sci. 33:340-343.

Cited by

  1. Molecular characterization of differentially expressed TXNIP gene and its association with porcine carcass traits vol.39, pp.12, 2012, https://doi.org/10.1007/s11033-012-1923-2
  2. Developmental changes and effect on intramuscular fat content of H-FABP and A-FABP mRNA expression in pigs vol.54, pp.1, 2013, https://doi.org/10.1007/s13353-012-0122-0
  3. Study on quantitative expression of PPARγ and ADRP in muscle and its association with intramuscular fat deposition of pig vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3187-0
  4. Polymorphism of Ghrelin Gene in Twelve Chinese Indigenous Chicken Breeds and Its Relationship with Chicken Growth Traits vol.19, pp.2, 2005, https://doi.org/10.5713/ajas.2006.153
  5. Mapping, Tissue Distribution and Polymorphism Study of the Porcine SOCS2 and SOCS3 Genes vol.19, pp.2, 2006, https://doi.org/10.5713/ajas.2006.165
  6. Effects of Heart Fatty Acid-binding Protein Genotype on Intramuscular Fat Content in Duroc Pigs Selected for Meat Production and Meat Quality Traits vol.20, pp.5, 2005, https://doi.org/10.5713/ajas.2007.622
  7. Postnatal Expression Pattern of Adipose Type Fatty Acid Binding Protein in Different Adipose Tissues of Porcine vol.20, pp.6, 2005, https://doi.org/10.5713/ajas.2007.811
  8. The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig vol.140, pp.1, 2005, https://doi.org/10.1016/j.livsci.2011.04.007