Sequential separation of 90Sr, 241Am, 239,240Pu and 238Pu by radioanalytical techniques

방사능 분석기술을 이용한 90Sr, 239,240Pu, 238Pu, 241Am 축차분리

  • Received : 2005.08.18
  • Accepted : 2005.11.24
  • Published : 2005.12.26

Abstract

This paper presents a quantitative method of sequential separation of $^{90}Sr$, $^{241}Am$ and Pu radionuclides with an anion exchange resin and a Sr-Spec resin. The Pu isotopes were purified with an anion exchange resin. The americium and strontium fractions were separated from the matrix elements with an oxalate co-precipitation method. Americium fraction was separated from the strontium fraction with iron co-precipitation method and purified from lanthanides with anion exchange resin. Strontium-90 was purified from other hindrance elements with the Sr-Spec resin after oxalate co-precipitation. The measurement of Pu and Am isotopes was carried out by an ${\alpha}$-spectrometer. Strontium-90 was measured by a liquid scintillation counter. The radiochemical procedure of $^{90}Sr$, $^{241}Am$ and Pu radionuclides investigated in this study has been validated by application to IAEA-Reference soils.

본 연구에서는 음이온 교환수지와 Sr-Spec 수지를 사용하여 토양중 $^{90}Sr$, $^{241}Am$ 및 Pu 동위원소들에 대하여 축차적으로 분리하는 정량법을 제시하였다. 플루토늄은 음이온 교환수지를 이용하여 분리하였고, 아메리슘 및 스트론튬은 옥살산 공침법 및 Sr-Spec 수지를 사용하여 순수 분리하였다. Pu 및 Am 동위원소는 알파 스펙트로메트리법으로 정량하였고, Sr-90은 액체섬광계수기를 사용하여 정량하였다. 본 연구에서 고찰된 $^{90}Sr$, $^{241}Am$ 및 Pu 동위원소 분석법을 IAEA 기준시료에 적용하여 분석법의 타당성을 검증하였다.

Keywords

References

  1. N. A. Chieco, D. C. Bogen, E. O. Knutson (Eds), EML Procedures Manual, 27th ed., U.S. Department of Energy, New York, 1992
  2. Analytical Methods of Uranium, Radioactivity Measurement Series no. 14, Japan Chemical Analysis Center, Science and Technology Agency in Japan, 1991
  3. Schuttelkopf H. KfK-Report 3035, 1981
  4. E. P. Horwitz, M. L. Dietz, D. M. Nelson, J. J. Larosa, W. D. Fairman, Analyt. Chim. Acta, 238, 263(1990) https://doi.org/10.1016/S0003-2670(00)80546-2
  5. E. P. Horwitz, R. Chiarizia, M. L. Dietz, H. Diamond, Analyt. Chim. Acta 281, 361(1993) https://doi.org/10.1016/0003-2670(93)85194-O
  6. M. Yamamoto, K. Komura, M. Sakanoue, Radiochem. Acta, 29, 205(1981)
  7. A. Yamato, J. Radioanal. Nucl. Chem. Article, 75, 265 (1982)
  8. K. Bunzl, W. Kracke, J. Radioanal. Nucl. Chem. Article, 115, 13(1987) https://doi.org/10.1007/BF02041972
  9. J. Moreno, N. Vajda, P. R. Danesi, J. J. Larosa, E. Zeiller, M. Sinojmeri, J. Radioanal. Nucl. Chem., 226, 2799(1997) https://doi.org/10.1007/BF02063661
  10. M. H. Lee and C. W. Lee, Instrum. Methods Phys. Res., 447, 593(2000) https://doi.org/10.1016/S0168-9002(99)01190-0
  11. M. J. Kessler (Ed), Liquid Scintillation Analysis. Science and Technology, Packard Instrument Co., 1989
  12. K. H. Hong, Y. H. Cho, M. H. Lee, G. S. Choi, C. W. Lee, Appl. Radiat. Isot., 54, 299(2001) https://doi.org/10.1016/S0969-8043(00)00101-9
  13. M. H. Lee, K. H. Chung, G. K. Choi, C. W. Lee, Appl. Radiat. Isot., 57, 257(2002) https://doi.org/10.1016/S0969-8043(02)00108-2
  14. G. R. Choppin, J. Anal. Chem. 51, 1129(1996)
  15. M. H. Lee, Y. H. Cho, G. S. Choi, C. W. Lee, H. S. Shin, Anal. Sci. Tech., 14, 64(2001)
  16. Z. Radecki, M. Campbell, K. I. Burns, Radionuclides and Trace Elements in Soil, IAEA-375 Reference Material, Vienna, 1991
  17. 'Quantifying Uncertainty in Analytical Measurement', Eurachem, 1999