Backbone 1H, 15N, and 13C Resonance Assignments and Secondary-Structure of Conserved Hypothetical Protein HP0894 from Helicobacter pylori

  • Han, Kyung-Doo (National Laboratory of Membrane Protein Structure (MPS), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Park, Sung-Jean (National Laboratory of Membrane Protein Structure (MPS), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Lee, Bong-Jin (National Laboratory of Membrane Protein Structure (MPS), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2005.09.23
  • Accepted : 2005.09.30
  • Published : 2005.12.31

Abstract

HP0894 (SwissProt/TrEMBL ID O25554) is an 88-residue conserved hypothetical protein from Helicobacter pylori strain 26695 with a calculated pI of 8.5 and a molecular weight of 10.38 kDa. Proteins with sequence similarity to HP0894 exist in Vibrio choierae, Enterococcus faecalis, Campylobacter jejuni, Streptococcus pneumoniae, Haemophilus influenzae, Escherichia coli O157, etc. Here we report the sequence-specific backbone resonance assignments of HP0894. About 97.5% (418/429) of the HN, N, CO, $C{\alpha}$, $C{\beta}$ resonances of the 88 residues of HP0894 were assigned. On the basis of these assignments, three helical regions and four strand regions were identified using the CSI program. This study is a prerequisite for calculating the solution structure of HP0894, and studying its interaction with its substrates, if any, and/or with other proteins.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180 https://doi.org/10.1038/16495
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., et al. (2002) The Pfam protein families data base. Nucleic Acids Res. 30, 276-280 https://doi.org/10.1093/nar/30.1.276
  4. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., et al. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293
  5. Gronenborn, A. M., Bax, A., Wingfield, P. T., and Clore, M. (1989) A powerful method of sequential proton resonance assignment in proteins using relayed $^{15}N-^1H$ multiple quantum coherence spectroscopy. FEBS Lett. 243, 93-98 https://doi.org/10.1016/0014-5793(89)81224-4
  6. Grzesiek, S. and Bax, A. (1992) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291-6293 https://doi.org/10.1021/ja00042a003
  7. Ikura, M., Bax, A., Clore, M., and Gronenborn, A. M. (1990) Detection of nuclear Overhauser effects between degenerate amide proton resonances by heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 112, 9020-9021 https://doi.org/10.1021/ja00180a080
  8. Kay, R. E., Ikura, M., Tschudin, R., and Bax, A. (1990) Threedimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496-502
  9. Lee, T. B., Lim, D. Y., Jeon, H. J., Min Y. D., Kim, K. C., et al.(2003) Differential induction of Mn-containing superoxide dismutase by paraquat in peripheral lymphocytes of normal subjects and gastric cancer patients. Mol. Cells 16, 13-18
  10. Marchler-Bauer, A. and Bryant, S. H. (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327-331 https://doi.org/10.1093/nar/gkh454
  11. Marshall, B. J. and Warren, J. R. (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315
  12. Peek, Jr. R. M. and Blaser, M. J. (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28-37 https://doi.org/10.1038/nrc703
  13. Rothenbacher, D. and Brenner, H. (2003) Burden of Helicobacter pylori and H. pylori-related diseases in developed countries: recent developments and future implications. Microbes Infect. 5, 693-703 https://doi.org/10.1016/S1286-4579(03)00111-4
  14. Sachs, G., Weeks, D. I., Melchers, K., and Scott, D. R. (2003) The gastric biology of Helicobacter pylori. Annu. Rev. Physiol. 65, 349-369 https://doi.org/10.1146/annurev.physiol.65.092101.142156
  15. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547 https://doi.org/10.1038/41483
  16. Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Meth. Enzymol. 239, 363-392 https://doi.org/10.1016/S0076-6879(94)39014-2
  17. Wittekind, M. and Mueller, L. (1993) HNCACB, A high sensitivity 3D NMR experiment to correlate amide proton and nitrogen resonances with the a-carbon and b-carbon resonances in proteins. J. Magn. Reson. Ser. B101, 214-217
  18. Wotherspoon, A. C., Doglioni, C., Diss, T. C., Pan, L., Moschini, A., et al. (1993) Regression of primary low-grade Bcell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575-577 https://doi.org/10.1016/0140-6736(93)91409-F