References
- Alam, J., Wicks, C., Stewart, D., Gong, P., Touchard, C., Otterbein, S., Choi, A. M., Burow, M. E. and Tou, J. (2000) Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J. Biol. Chem. 275, 27694-27702
- Alcaraz, M. J., Fernandez, P. and Guillen, M. I. (2003) Antiinflammatory actions of the heme oxygenase-1 pathway. Curr. Pharm. Des. 9, 2541-2551 https://doi.org/10.2174/1381612033453749
- Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887- 895 https://doi.org/10.1042/BJ20021619
- Chen, C., Yu, R., Owuor, E. D. and Kong, A. N. (2000) Activation of antioxidant-response element (ARE), mitogenactivated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 23, 605-612 https://doi.org/10.1007/BF02975249
- Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198-7209 https://doi.org/10.1128/MCB.23.20.7198-7209.2003
- Dhakshinamoorthy, S. and Jaiswal, A. K. (2001) Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 20, 3906- 3917 https://doi.org/10.1038/sj.onc.1204506
- Durante, W. (2003) Heme oxygenase-1 in growth control and its clinical application to vascular disease. J. Cell. Physiol. 195, 373-382 https://doi.org/10.1002/jcp.10274
- Fahey, J. W., Haristoy, X., Dolan, P. M., Kensler, T. W., Scholtus, I., Stephenson, K. K., Talalay, P. and Lozniewski, A. (2002) Sulforaphane inhibits extracellular, intracellular, and antibioticresistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 99, 7610-7615. https://doi.org/10.1073/pnas.112203099
- Favreau, L. V. and Pickett, C. B. (1991) Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J. Biol. Chem. 266, 4556-4561
- Haridas, V., Hanausek, M., Nishimura, G., Soehnge, H., Gaikwad, A., Narog, M., Spears, E., Zoltaszek, R., Walaszek, Z. and Gutterman, J. U. (2004) Triterpenoid electrophiles (avicins) activate the innate stress response by redox regulation of a gene battery. J. Clin. Invest. 113, 65-73 https://doi.org/10.1172/JCI200418699
- Huang, H. C., Nguyen, T. and Pickett, C. B. (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA 97, 12475-12480 https://doi.org/10.1073/pnas.220418997
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322 https://doi.org/10.1006/bbrc.1997.6943
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes. Dev. 13, 76-86 https://doi.org/10.1101/gad.13.1.76
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O'Connor, T. and Yamamoto, M. (2003) Keap1 regulates both cytoplasmicnuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379-391 https://doi.org/10.1046/j.1365-2443.2003.00640.x
- Jaiswal, A. K. (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262 https://doi.org/10.1016/S0891-5849(00)00306-3
- Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199- 207 https://doi.org/10.1016/j.freeradbiomed.2004.02.074
- Keum, Y. S., Owuor, E. D., Kim, B. R., Hu, R. and Kong, A. N. (2003) Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm. Res. 20, 1351- 1356 https://doi.org/10.1023/A:1025737622815
- Kim, B. R., Hu, R., Keum, Y. S., Hebbar, V., Shen, G., Nair, S. S. and Kong, A. N. (2003) Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res. 63, 7520-7525
- Kong, A. N., Yu, R., Hebbar, V., Chen, C., Owuor, E., Hu, R., Ee, R. and Mandlekar, S. (2001) Signal transduction events elicited by cancer prevention compounds. Mutat. Res. 480, 231-241 https://doi.org/10.1016/S0027-5107(01)00182-8
- Kwak, M. K., Itoh, K., Yamamoto, M. and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response elementlike sequences in the nrf2 promoter. Mol. Cell. Biol. 22, 2883- 2892 https://doi.org/10.1128/MCB.22.9.2883-2892.2002
- McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278, 21592-21600 https://doi.org/10.1074/jbc.M300931200
- Morimitsu, Y., Nakagawa, Y., Hayashi, K., Fujii, H., Kumagai, T., Nakamura, Y., Osawa, T., Horio, F., Itoh, K., Iida, K., Yamamoto, M. and Uchida, K. (2002) A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. J. Biol. Chem. 277, 3456-3463 https://doi.org/10.1074/jbc.M110244200
- Nakaso, K., Yano, H., Fukuhara, Y., Takeshima, T., Wada-Isoe, K. and Nakashima, K. (2003) PI3K is a key molecule in the Nrf2- mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546, 181-184 https://doi.org/10.1016/S0014-5793(03)00517-9
- Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541 https://doi.org/10.1074/jbc.M207293200
- Primiano, T., Sutter, T. R. and Kensler, T. W. (1997) Antioxidantinducible genes. Adv. Pharmacol. 38, 293-328 https://doi.org/10.1016/S1054-3589(08)60989-8
- Ramos-Gomez, M., Kwak, M. K., Dolan, P. M., Itoh, K., Yamamoto, M., Talalay, P. and Kensler, T. W. (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factordeficient mice. Proc. Natl. Acad. Sci. USA 98, 3410-3415 https://doi.org/10.1073/pnas.051618798
- Rushmore, T. H., Morton, M. R. and Pickett, C. B. (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266, 11632-11639
- Shen, G., Hebbar, V., Nair, S., Xu, C., Li, W., Lin, W., Keum, Y. S., Han, J., Gallo, M. A. and Kong, A. N. (2004) Regulation of Nrf2 transactivation domain activity: the differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of raf and creb-binding protein. J. Biol. Chem. 279, 23052-23060 https://doi.org/10.1074/jbc.M401368200
- Stewart, D., Killeen, E., Naquin, R., Alam, S. and Alam, J. (2003) Degradation of transcription factor Nrf2 via the ubiquitinproteasome pathway and stabilization by cadmium. J. Biol. Chem. 278, 2396-2402 https://doi.org/10.1074/jbc.M209195200
- Talalay, P. and Fahey, J. W. (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr. 131, 3027-3033
- Venugopal, R. and Jaiswal, A. K. (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. USA 93, 14960- 14965 https://doi.org/10.1073/pnas.93.25.14960
- Wen, J., You, K. R., Lee, S. Y., Song, C. H. and Kim, D. G. (2002) Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem. 277, 38954-38964 https://doi.org/10.1074/jbc.M203842200
- Wu, L. and Juurlink, B. H. (2001) The impaired glutathione system and its up-regulation by sulforaphane in vascular smooth muscle cells from spontaneously hypertensive rats. J. Hypertens. 19, 1819-1825 https://doi.org/10.1097/00004872-200110000-00016
- Yang, C. S., Maliakal, P. and Meng, X. (2002) Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. Toxicol. 42, 25- 54 https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
- Yu, R., Chen, C., Mo, Y. Y., Hebbar, V., Owuor, E. D., Tan, T. H. and Kong, A. N. (2000) Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275, 39907-39913 https://doi.org/10.1074/jbc.M004037200
- Yu, R., Lei, W., Mandlekar, S., Weber, M. J., Der, C. J., Wu, J. and Kong, A. T. (1999) Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J. Biol. Chem. 274, 27545-27552 https://doi.org/10.1074/jbc.274.39.27545
- Zhang, D. D. and Hannink, M. (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23, 8137-8151 https://doi.org/10.1128/MCB.23.22.8137-8151.2003
- Zhang, S., Ong, C. N. and Shen, H. M. (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 208, 143-153 https://doi.org/10.1016/j.canlet.2003.11.028
Cited by
- Drugs and Acute Porphyrias: Reasons for a Hazardous Relationship vol.126, pp.7, 2014, https://doi.org/10.3810/pgm.2014.11.2839
- TrxR1 as a Potent Regulator of the Nrf2-Keap1 Response System vol.23, pp.10, 2015, https://doi.org/10.1089/ars.2015.6378
- Hormetic Dietary Phytochemicals vol.10, pp.4, 2008, https://doi.org/10.1007/s12017-008-8037-y
- p-hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia vol.31, pp.3, 2011, https://doi.org/10.1007/s10059-011-0028-4
- The activation of the Nrf2/ARE pathway in HepG2 hepatoma cells by phytochemicals and subsequent modulation of phase II and antioxidant enzyme expression vol.71, pp.2, 2015, https://doi.org/10.1007/s13105-015-0401-4
- Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells vol.45, pp.11, 2006, https://doi.org/10.1002/mc.20234
- α-pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells vol.19, pp.5, 2010, https://doi.org/10.1007/s10068-010-0189-5
- Natural isothiocyanates: Genotoxic potential versus chemoprevention vol.750, pp.2, 2012, https://doi.org/10.1016/j.mrrev.2011.12.001
- Procyanidins from Wild Grape (Vitis amurensis) Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010801
- Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation vol.443, pp.1, 2012, https://doi.org/10.1042/BJ20111648
- Indole-3-carbinol and its N-alkoxy derivatives preferentially target ERα-positive breast cancer cells vol.13, pp.16, 2014, https://doi.org/10.4161/15384101.2015.942210
- Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes vol.50, pp.8, 2012, https://doi.org/10.1016/j.fct.2012.05.044
- The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism vol.2015, 2015, https://doi.org/10.1155/2015/597134
- Modulating Potential ofL-Sulforaphane in the Expression of Cytochrome P450 to Identify Potential Targets for Breast Cancer Chemoprevention and Therapy Using Breast Cell Lines vol.29, pp.1, 2015, https://doi.org/10.1002/ptr.5232
- Transcriptional regulation via cysteine thiol modification: A novel molecular strategy for chemoprevention and cytoprotection vol.45, pp.6, 2006, https://doi.org/10.1002/mc.20225
- Effects of Combined Treatment with Resveratrol and Indole-3-Carbinol vol.149, pp.2, 2010, https://doi.org/10.1007/s10517-010-0910-7
- Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression vol.49, pp.1, 2011, https://doi.org/10.1016/j.fct.2010.10.002
- Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1–MKK4/7–JNK and p38 MAPK signaling pathways in HepG2 cells vol.40, pp.4, 2016, https://doi.org/10.1016/j.jgr.2016.07.003
- Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models vol.28, pp.9, 2007, https://doi.org/10.1111/j.1745-7254.2007.00694.x
- Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells vol.93, pp.5, 2009, https://doi.org/10.1111/j.1439-0396.2008.00838.x
- Apolipoprotein E genotype affects tissue metallothionein levels: studies in targeted gene replacement mice vol.7, pp.2, 2012, https://doi.org/10.1007/s12263-012-0282-x
- Dietary antiaging phytochemicals and mechanisms associated with prolonged survival vol.25, pp.6, 2014, https://doi.org/10.1016/j.jnutbio.2014.02.001
- Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols vol.1822, pp.5, 2012, https://doi.org/10.1016/j.bbadis.2011.10.005
- Identification of UV-protective Activators of Nuclear Factor Erythroid-derived 2-Related Factor 2 (Nrf2) by Combining a Chemical Library Screen with Computer-based Virtual Screening vol.287, pp.39, 2012, https://doi.org/10.1074/jbc.M112.383430
- Protective mechanisms of Aralia continentalis extract against tert-butyl hydroperoxide-induced hepatotoxicity: In vivo and in vitro studies vol.46, pp.11, 2008, https://doi.org/10.1016/j.fct.2008.08.035
- Induction of Detoxification Enzymes by Feeding Unblanched Brussels Sprouts Containing Active Myrosinase to Mice for 2 Wk vol.75, pp.6, 2010, https://doi.org/10.1111/j.1750-3841.2010.01713.x
- Cancer and diet: How are they related? vol.45, pp.8, 2011, https://doi.org/10.3109/10715762.2011.582869
- Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102050
- Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway vol.19, pp.7, 2014, https://doi.org/10.3390/molecules190710074
- Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes vol.20, pp.2, 2012, https://doi.org/10.4062/biomolther.2012.20.2.144
- Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response vol.23, pp.7, 2015, https://doi.org/10.1089/ars.2014.5962
- Antioxidants in Foods: State of the Science Important to the Food Industry vol.59, pp.13, 2011, https://doi.org/10.1021/jf2013875
- Anticarcinogenesis by dietary phytochemicals: Cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells vol.46, pp.4, 2008, https://doi.org/10.1016/j.fct.2007.09.082
- Allyl isothiocyanate as a cancer chemopreventive phytochemical vol.54, pp.1, 2010, https://doi.org/10.1002/mnfr.200900323
- Traditional Chinese medicinal formula Si-Wu-Tang prevents oxidative damage by activating Nrf2-mediated detoxifying/antioxidant genes vol.4, pp.1, 2014, https://doi.org/10.1186/2045-3701-4-8
- Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model vol.47, pp.2, 2009, https://doi.org/10.1111/j.1600-079X.2009.00698.x
- Active defense under oxidative stress. The antioxidant responsive element vol.71, pp.9, 2006, https://doi.org/10.1134/S0006297906090033
- Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis vol.13, pp.1, 2011, https://doi.org/10.1208/s12248-010-9239-4
- TCDD as a biological response modifier for Mitomycin C: Oxygen tension affects enzyme activation, reactive oxygen species and cell death vol.78, pp.13, 2006, https://doi.org/10.1016/j.lfs.2005.07.021
- Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression vol.137, pp.2, 2013, https://doi.org/10.1016/j.pharmthera.2012.09.008
- Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death vol.259, pp.2, 2012, https://doi.org/10.1016/j.taap.2011.12.027
- The cancer chemopreventive actions of phytochemicals derived from glucosinolates vol.47, pp.S2, 2008, https://doi.org/10.1007/s00394-008-2009-8
- Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease vol.179, pp.2, 2009, https://doi.org/10.1164/rccm.200804-535OC
- Pharmacodynamics of Ginsenosides: Antioxidant Activities, Activation of Nrf2, and Potential Synergistic Effects of Combinations vol.25, pp.8, 2012, https://doi.org/10.1021/tx2005025
- Mechanism of the Nrf2/Keap1/ARE signaling system vol.76, pp.4, 2011, https://doi.org/10.1134/S0006297911040031
- Structural Influence of Isothiocyanates on the Antioxidant Response Element (ARE)-Mediated Heme Oxygenase-1 (HO-1) Expression vol.25, pp.4, 2008, https://doi.org/10.1007/s11095-007-9370-9
- Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation vol.368, pp.4, 2008, https://doi.org/10.1016/j.bbrc.2008.02.018
- Anti-angiogenic effects of dietary isothiocyanates: Mechanisms of action and implications for human health vol.81, pp.3, 2011, https://doi.org/10.1016/j.bcp.2010.10.005
- Parthenolide ameliorates Concanavalin A-induced acute hepatitis in mice and modulates the macrophages to an anti-inflammatory state vol.38, 2016, https://doi.org/10.1016/j.intimp.2016.05.024
- Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage vol.181, pp.3, 2009, https://doi.org/10.1016/j.cbi.2009.07.017
- In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: Involvement of Nrf2 and cell cycle/apoptosis signaling pathways vol.51, pp.10, 2012, https://doi.org/10.1002/mc.20841
- A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root vol.29, pp.3, 2013, https://doi.org/10.1080/87559129.2013.790047
- The effect of sulforaphane on histone deacetylase activity in keratinocytes: Differences between in vitro and in vivo analyses vol.54, pp.11, 2015, https://doi.org/10.1002/mc.22224
- Allyl isothiocyanate suppresses the proteolytic activation of sterol regulatory element-binding proteins andde novofatty acid and cholesterol synthesis vol.80, pp.5, 2016, https://doi.org/10.1080/09168451.2015.1132154
- Nrf2: A Potential Molecular Target for Cancer Chemoprevention by Natural Compounds vol.8, pp.1-2, 2006, https://doi.org/10.1089/ars.2006.8.99
- 6-Shogaol-Rich Extract from Ginger Up-Regulates the Antioxidant Defense Systems in Cells and Mice vol.17, pp.7, 2012, https://doi.org/10.3390/molecules17078037