Up-Regulation of Glutathione Biosynthesis in NIH3T3 Cells Transformed with the ETV6-NTRK3 Gene Fusion

  • Kim, Su-Jung (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Hong-Gyum (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Lim, Hye-Won (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Women's University) ;
  • Lim, Chang-Jin (Division of Life Sciences, College of Natural Sciences, Kangwon National University)
  • Received : 2004.07.30
  • Accepted : 2004.10.21
  • Published : 2005.02.28

Abstract

The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Adachi, T., Pimentel, D. R., Heibeck, T., Hou, S., Lee, Y. J., et al. (2004) S-Glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 279, 29857-29862 https://doi.org/10.1074/jbc.M313320200
  2. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Carretero, J., Obrador, E., Anasagasti, M. J., Martin, J. J., Vidal-Vanaclocha, F., et al. (1999) Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin. Exp. Metastasis 17, 567-574 https://doi.org/10.1023/A:1006725226078
  4. Chuang, J. I., Chang, T. Y., and Liu, H. S. (2003) Glutathione depletion-induced apoptosis of Ha-ras-transformed NIH3T3 cells can be prevented by melatonin. Oncogene 22, 1349-1357 https://doi.org/10.1038/sj.onc.1206289
  5. Dolphin, D., Poulson, R., and Avromoric, O. (1989) Coenzymes and cofactors. Glutathione: Chemical, Biochemical and Medical Aspects, Vol. 3, Part A, New York
  6. Domenicotti, C., Marengo, B., Verzola, D., Garibotto, G., Traverso, N., et al. (2003) Role of PKC-delta activity in glutathionedepleted neuroblastoma cells. Free Radic. Biol. Med. 5, 504-516
  7. Ebadi, M., Bashir, R. M., Heidrick, M. L., Hamada, F. M., Refaey, H. E., et al. (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int. 30, 347-374 https://doi.org/10.1016/S0197-0186(96)00071-X
  8. Edel, M. J. (1998) The ETS-related factor TEL is regulated by angiogenic growth factor VEGF in HUVE-cells. Anticancer Res. 18, 4505-4509
  9. Enoiu, M., Aberkane, H., Salazar, J.-F., Leroy, P., Groffen, J., et al. (2000) Evidence for the pro-oxidant effect of γ-glutamyltranspeptidase-related enzyme. Free Radic. Biol. Med. 29, 825-833 https://doi.org/10.1016/S0891-5849(00)00370-1
  10. Flohe, L. and Gunzler, W. A. (1984) Assay of Glutaredoxin peroxidase. Methods Enzymol. 105, 114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  11. Galloway, D. C., Blake, D. G., and McLellan, L. I. (1999) Regulation of γ-glutamylcysteine synthetase regulatory subunit (GLCLR) gene expression: identification of the major transcriptional start site in HT29 cells. Biochem. Biophys. Acta 1446, 47-56
  12. Huang, Z.-Z., Chen, C., Zeng, Z., Yang, H., Oh, J., et al. (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. 15, 19-21
  13. Iantomasi, T., Favilli, F., Degl'Innocenti, D., and Vincenzini, M. T. (1999) Increased glutathione synthesis associated with platelet-derived growth factor stimulation of NIH3T3 fibroblasts. Biochim. Biophys. Acta 1452, 303-312 https://doi.org/10.1016/S0167-4889(99)00142-1
  14. Ichaso, N., Rodriguez, R. E., Martin-Zanca, D., and Gonzalez-Sarmiento, R. (1998) Genomic characterization of the human trkC gene. Oncogene 17, 1871-1875 https://doi.org/10.1038/sj.onc.1202100
  15. Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., et al. (1997) Mitogenic signaling mediated by oxidants in Rastransformed fibroblast. Science 275, 1649-1652 https://doi.org/10.1126/science.275.5306.1649
  16. Joneson, T. and Bar-Sagi, D. (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273, 17991-17994 https://doi.org/10.1074/jbc.273.29.17991
  17. Knezevich, S. R., McFadden, D. E., Tao, W., Lim, J. F., and Sorensen, P. H. (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 18, 184-187 https://doi.org/10.1038/ng0298-184
  18. Kuo, M. L., Chou, Y. W., Chau, Y. P., and Meng, T. C. (1996) Differential induction of apoptosis in oncogene-transformed NIH 3T3 cells by methylmethanesulfonate. Biochem. Pharmacol. 52, 481-488 https://doi.org/10.1016/0006-2952(96)00251-1
  19. Lannon, C. L., Martin, M. J., Tognon, C. E., Jin, W., Kim, S. J., et al. (2004) A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J. Biol. Chem. 279, 6225-6234 https://doi.org/10.1074/jbc.M307388200
  20. Lee, Y.-Y., Kim, H.-G., Jung, H.-I., Shin, Y. H., Hong, S. M., et al. (2002) Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311
  21. Mates, J. M., Perez-Gomez, C., and Nunez de Castro, I. (1999) Antioxidant enzymes and human diseases. Clin. Biochem. 32, 595-603 https://doi.org/10.1016/S0009-9120(99)00075-2
  22. Meister, A. (1985) Glutathione synthetase from rat kidney. Methods Enzymol. 113, 393-399 https://doi.org/10.1016/S0076-6879(85)13052-1
  23. Morrison, K. B., Tognon, C. E., Garnett, M. J., Deal, C., and Sorensen, P. H. (2002) ETV6-NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation. Oncogene 21, 5684-5695 https://doi.org/10.1038/sj.onc.1205669
  24. Nakagawa, K., Saito, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., et al. (1990) Glutathione S-transferase II as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301
  25. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392-8396
  26. Rabin, S. J., Cleghon, V., and Kaplan, D. R. (1993) SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol. Cell. Biol. 13, 2203-2213
  27. Schnelldorfer, T., Gansauge, S., Gansauge, F., Schlosser, S., Beger, H. G., et al. (2000) Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer 89, 1440-1447 https://doi.org/10.1002/1097-0142(20001001)89:7<1440::AID-CNCR5>3.0.CO;2-0
  28. Seelig, G. F. and Meister, A. (1985) Glutathione biosynthesis; γ-glutamylcysteine synthetase from rat kidney. Methods Enzymol. 113, 379-390 https://doi.org/10.1016/S0076-6879(85)13050-8
  29. Seyfried, J., Soldner, F., Schulz, J. B., Klockgether, T., Kovar, K. A., et al. (1999) Differential effects of L-buthionine sulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells. Neurosci. Lett. 264, 1-4 https://doi.org/10.1016/S0304-3940(99)00107-X
  30. Terradez, P., Asensi, M., Lasso De la Vega, M. C., Puertes, I. R., Vina, J., et al. (1993) Depletion of tumour glutathione in vivo by buthionine sulfoximine: modulation by the rate of cellular proliferation and inhibition of cancer growth. Biochem. J. 292, 477-483
  31. Tognon, C., Garnett, M., Kenward, E., Kay, R., Morrison, K., et al. (2001) The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 61, 8909-8916
  32. Ushio-Fukai, M., Alexander, R. W., Akers, M., and Griendling, K. K. (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem. 273, 15022-15029 https://doi.org/10.1074/jbc.273.24.15022
  33. Ushio-Fukai, M., Alexander, R. W., Akers, M., Yin, Q., Walsh, K., et al. (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22699-22704 https://doi.org/10.1074/jbc.274.32.22699
  34. Vincenzini, M. T., Marraccini, P., Iantomasi, T., Favilli, F., Pacini, S., et al. (1993) Altered metabolism of glutathione in cells transformed by oncogenes which cause resistance to ionizing radiations. FEBS Lett. 320, 219-223 https://doi.org/10.1016/0014-5793(93)80590-Q
  35. Wai, D. H., Knezevich, S. R., Lucas, T., Jansen, B., Kay, R. J., et al. (2000) The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19, 906-915 https://doi.org/10.1038/sj.onc.1203396
  36. Wang, L. C., Swat, W., Fujiwara, Y., Davidson, L., Visvader, J., et al. (1998) The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 12, 2392-2402 https://doi.org/10.1101/gad.12.15.2392
  37. Yang, C. F., Shen, H. M., and Ong, C. N. (1999) Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem. Pharmacol. 57, 273-279 https://doi.org/10.1016/S0006-2952(98)00299-8