Production and CO2 Adsorption Characteristics of Activated Carbon from Bamboo by CO2 Activation Method

CO2 활성화법에 의한 대나무 활성탄 제조와 CO2 흡착 특성

  • Bak, Young-Cheol (Department of Chemical Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Cho, Kwang-Ju (Department of Chemical Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical Engineering/Engineering Research Institute, Gyeongsang National University)
  • 박영철 (경상대학교 화학공학과, 공학연구원) ;
  • 조광주 (경상대학교 화학공학과, 공학연구원) ;
  • 최주홍 (경상대학교 화학공학과, 공학연구원)
  • Received : 2004.08.25
  • Accepted : 2004.11.18
  • Published : 2005.02.28

Abstract

The activated carbon was produced from Sancheong bamboo by carbon dioxide gas activation methods. The carbonization of raw material was conducted at $900^{\circ}C$, and $CO_2$ activation reactions were conducted under various conditions: activation temperatures of $750-900^{\circ}C$, flow rates of carbon dioxide $5-30cm^3/g-char{\cdot}min$, and activation time of 2-5 h. The yield, adsorption capacity of iodine and methylene blue, specific surface area and pore size distribution of the prepared activated carbons were measured. The adsorption capacity of iodine (680.8-1450.1 mg/g) and methylene blue (23.5-220 mg/g) increased with increasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the $CO_2$ gas quantity in the range of $5-18.9cm^3/g-char{\cdot}min$. But those decreased over those range due to the pore shrinkage. The specific volume of the mesopore and macropore of bamboo activated carbon were $0.65-0.91cm^3/g$. Because of this large specific volume, it can be used to the biological activated carbon process. Bamboo activated carbon phisically adsorbed the $CO_2$ of maximum 106 mg/g-A.C in the condition of 90% $CO_2$ and adsorption temperature of $20^{\circ}C$. The $CO_2$ adsorption ability of bamboo activated carbon was not changed in the 5 cyclic test of desorption and adsorption.

대나무를 원료로 이산화탄소를 활성화제로 한 기상 활성화법에 의하여 대나무 활성탄을 제조하고, 이 대나무 활성탄의 $CO_2$ 흡착 특성을 실험하였다. 국내 산청산 대나무를 탄화온도 $900^{\circ}C$에서 열분해 하여 대나무 숯을 만든 후 배치형 튜브 반응기 내에서 활성화 온도 $750-900^{\circ}C$, 이산화탄소 주입비 $5-30cm^3/g-char{\cdot}min$, 활성화 유지시간 2-5 시간의 변화 조건에서 활성화 실험을 하였다. 제조된 활성탄은 수율이 측정되고 요오드 흡착력, 메틸렌 블루 흡착력과 비표면적 및 세공분포 등의 물리적 특성이 분석되었다. $CO_2$ 흡착 실험은 열중량 분석기를 사용하여 흡착온도 $20-80^{\circ}C$, $CO_2$ 농도 5-90% 변화 조건에서 행하였다. 활성화 온도와 활성화 시간이 증가됨에 따라 요오드 흡착력(680.8-1450.1 mg/g)과 메틸렌 블루 흡착력(23.5-220 mg/g)은 증가하였다. 그리고 $CO_2$ 가스 주입량의 증가시 $18.9cm^3/g-char{\cdot}min$까지는 요오드 흡착력과 메틸렌 블루 흡착력이 증가하였으나, 그 이상에서는 과다한 반응으로 수율의 급격한 감소와 함께 요오드 흡착력과 메틸렌 블루 흡착력도 감소하였다. 대나무 활성탄 특성 분석에서 중간세공과 거대세공 부피가 $0.65-0.91cm^3/g$으로 나타나 생물활성탄공정에 유리하게 사용될 수 있다. 대나무 활성탄의 $CO_2$ 흡착 실험에서는 흡착온도 $20^{\circ}C$, $CO_2$ 농도 90%에서 최대 106 mg/g-A.C.의 $CO_2$를 물리흡착 하였다. 5회 반복 실험시 $CO_2$ 흡착 특성 변화는 없었다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. Halmann, M. M., Chemical fixation of carbon dioxide-Methods for recycling $CO_2$ into useful products, CRC Press, Boca Raton (1993)
  2. Yong, Z., Matta, V. and Rodrigues, A. E., 'Adsorption of Carbon Dioxide at High Temperature-a Review,' Separation Purification Technology, 26, 195-205(2002) https://doi.org/10.1016/S1383-5866(01)00165-4
  3. Chue, K. T., Kim, J. N., Yoo, Y. J. and Cho, S. H., 'Comparison of Activated Carbon and Zeolite 13x for $CO_2$ Recovery from Flue Gas by PSA,' Ind. Eng. Chem. Res., 34(2), 591-598(1995) https://doi.org/10.1021/ie00041a020
  4. Hassler, J. W., Activated Carbon, Chem. Pub(1963)
  5. Lee, S. W., Na, Y. S., Kim, D, H., Ryu, D. C., Choi, R. H., Ryu, B. S. and Song, S. K., 'Pore Characteristics of Anthracite-Based Activated Carbon According to Granulation Process,' HWAHAK KONGHAK, 40(1), 128-132(2002)
  6. Yoon, H. S., Sung, J. S. and Park, J. H., 'The Effect of Properties of China Coals on the Activated Carbon Characteristics,' HWAHAK KONGHAK, 34(3), 263-269(1996)
  7. Ko, Y. S. and Ahn, W. S., 'Preparation and Adsorption Characteristics of Activated Carbon from Korean Rice Hull,' HWAHAK KONGHAK, 31(6), 707-714(1993)
  8. Choi, J. I., Lee, S. B. and Kim, D. Y., 'A Study on the Preparation of GAC (Granular Activated Carbon) for BAC (Biological Activated Carbon) Process using Oak Wood,' J. of KSEE, 22(6), 1037-10444(2000)
  9. Satya, P. M. and Krishnaiah, J. A. K., 'Production of Activated Carbon from Coconut Shell Char in a Fluidized Bed Reactor,' Ind. Eng. Chem. Res., 36(9), 3625-3630(1997) https://doi.org/10.1021/ie970190v
  10. Tancredi, N., Cordero, T., Rodriguez-Mirasol, J. and Rodriguez, J. J., '$CO_2$ Gasification of Eucalyptus Wood Chars,' Fuel, 75(B), 1505-1508(1996) https://doi.org/10.1016/0016-2361(96)82641-X
  11. Vicente, G., Francisco, S. and Cristobal, V., 'Penetration of Sodium Catalysts in Activated Carbon: Effect on the Porous Structure and Reactivity in Air, Carbon Dioxide and Steam,' FUEL, 70(9), 1083-1090(1991) https://doi.org/10.1016/0016-2361(91)90264-B
  12. Lee, S. H., Chang, Y. H., Cho, B. R. and Kim, K. H., 'Change in Pore Structure of Char by $CO_2$ Gasification,' HWAHAK KONGHAK, 25(6), 539-545(1987)
  13. Korea Industrial Standard, KS M-1802, Test methods for activated carbon(1993)
  14. Kim, S. C. and Hong, I. K., 'Manufacturing and Physical Properties of Coal Based Activated Carbon,' J. of KSEE, 20(5), 745-754(1998)
  15. Barrett, E. P., Joyner, L. S. and Halenda, P. P., 'The Determination of Pore Volume and Area Distribution in Porous Substances. I. Computation from Nitrogen Isotherm,' J. Am. chem. soc., 73(1), 373-380(1951) https://doi.org/10.1021/ja01145a126
  16. Lowell, S. and Shields, E., Powder surface area and porosity, 3rd. ed., Chapman & Hall(1991)
  17. Lee, S. W., Moon, J. C., Lee, C. H., Ryu, D. C., Choi, D. H., Ryu, B. S. and Song, S. K., 'Analysis of Pore Characteristics Between Eommercial Activated Carbon and Domestic Anthracite-Based Activated Carbon,' J. of KSEE, 23(7), 1211-1218(2001)
  18. Bak, Y. C., Cho, K. J. and Kim. S. B., 'Reaction Characteristics of Calcium-Based Adsorbents for Bulk Separation of $CO_2$ in High-Temperature,' J. of KSEE, 25(5), 595-601(2003)
  19. Han, N. W., 'Correlation of Adsorption Equilibria of $CO_2$ on Activated Carbon,' Korea J. Chem. Eng., 2(1), 63-68(1985) https://doi.org/10.1007/BF02697551
  20. Na, B. K., Koo, K. K., Eum, H. M., Lee, H. and Song, H. K., '$CO_2$ Recovery From Flue Gas by PSA Process using Activated Carbon,' Korea J. Chem. Eng., 18(2), 220-227(2001) https://doi.org/10.1007/BF02698463
  21. Kawazoe, K. and Kawai, T., 'Correlation of Adsorption Equilibrium Data of Various Gases and Vapors on Molecular-Sieving Carbon,' J. of Chemical Engineering of Japan, 7(3), 158-162(1974) https://doi.org/10.1252/jcej.7.158