DOI QR코드

DOI QR Code

Thermal Dissociation and Conformational Lock of Superoxide Dismutase

  • Hong, J. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Moosavi-Movahedi, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Ghourchian, H. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Amani, M. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Amanlou, M. (Department of Medicinal Chemistry, Tehran University of Medical Sciences) ;
  • Chilaka, F.C. (Department of Biochemistry, University of Nigeria)
  • Published : 2005.09.30

Abstract

The kinetics of thermal dissociation of superoxide dismutase (SOD) was studied in 0.05 M Tris-HCl buffer at pH 7.4 containing $10^{-4}\;M$ EDTA. The number of conformational locks and contact areas and amino acid residues of dimers of SOD were obtained by kinetic analysis and biochemical calculation. The cleavage bonds between dimers of SOD during thermal dissociation and type of interactions between specific amino acid residues were also simulated. Two identical contact areas between two subunits were identified. Cleavage of these contact areas resulted in dissociation of the subunits, with destruction of the active centers, and thus, lost of activity. It is suggested that the contact areas interact with active centers by conformational changes involving secondary structural elements.

Keywords

References

  1. Abernethy, J. L., Steinman, H. M. and Hill, R. L. (1974) Bovine erythrocyte superoxide dismutase. Subunit structure and sequence location of the intrasubunit disulfide bond. J. Biol. Chem. 249, 7339-7347
  2. Bannister, J. V., Bannister, W. H. and Rotilio, G. (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22, 111-180 https://doi.org/10.3109/10409238709083738
  3. Battistoni, A., Folcarelli, S., Gabbianelli, R., Capo, C. and Rotilio, G. (1996) The Cu,Zn superoxide dismutase from Escherichia coli retains monomeric structure at high protein concentration. Evidence for altered subunit interaction in all the bacteriocupreins. Biochem. J. 320, 713-716
  4. Battistoni, A., Folcarelli, S., Gervoni, L., Polizio, F., Desideri, A., Giartosio, A. and Rotilio, G. (1998) Role of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli. J. Biol. Chem. 273, 5655-5661 https://doi.org/10.1074/jbc.273.10.5655
  5. Bertini, I., Piccioli, M., Viezzoli, M. S., Chiu, C. Y. and Mullenbach, G. T. (1994) A spectroscopic characterization of a monomeric analog of copper, zinc superoxide dismutase. Eur. Biophys. J. 23, 167-176 https://doi.org/10.1007/BF01007608
  6. Bordo, D., Djinovic-Carugo, K. and Bolognesi, M. (1994) Conserved patterns in the Cu,Zn superoxide dismutase family. J. Mol. Biol. 238, 366-386 https://doi.org/10.1006/jmbi.1994.1298
  7. Bourne, Y., Redford, S. M., Steinman, H. M., Lepock, J. R., Tainer, J. A. and Getzoff, E. D. (1996) Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci USA 93, 12774-12779
  8. Desideri, A., Falconi, M., Polticelli, F., Bolognesi, M., Djinovic, K. and Rotilio, G. (1992) Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for co-ordinated mutation of charged amino acid residues. J. Mol. Biol. 223, 337-342 https://doi.org/10.1016/0022-2836(92)90734-2
  9. Forman, H. S. and Fridovich, I. (1973) On the stability of bovine superoxide dismutase. The effects of metals. J. Biol. Chem. 248, 2645-2649
  10. Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I. and Hallewell, R. A. (1989) Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins 5, 322-336 https://doi.org/10.1002/prot.340050408
  11. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723 https://doi.org/10.1002/elps.1150181505
  12. Hough, M. A. and Hasnain, S. S. (1999) Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. J. Mol. Biol. 287, 579-592 https://doi.org/10.1006/jmbi.1999.2610
  13. Hough, M. A., Strange, R. W. and Hasnain, S. S. (2000) Conformational variability of the Cu site in one subunit of bovine CuZn superoxide dismutase: the importance of mobility in the Glu119-Leu142 loop region for catalytic function. J. Mol. Biol. 203, 231-241 https://doi.org/10.1006/jmbi.2000.4186
  14. Hough, M. A. and Hasnain, S. S. (2003) Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 A. Structure 11, 937-946 https://doi.org/10.1016/S0969-2126(03)00155-2
  15. Imlay, K. R. C. and Imlay, J. A. (1996) Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J. Bacteriol. 178, 2564-2571
  16. Kroll, J. S., Langford, P. R., Wilks, K. and Keil, A. D. (1995) Bacterial Cu,Zn-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all. Microbiology 141, 2271-2279 https://doi.org/10.1099/13500872-141-9-2271
  17. Liang, Y., Qu, S. S., Wang, C. X., Zou, G. L., Wu, Y. L. and Li, D. H. (2000) An on-line calorimetric study of the dismutation of superoxide anion catalyzed by SOD in batch reactors. Chem.Eng. Sci. 55, 6071-6078 https://doi.org/10.1016/S0009-2509(00)00417-6
  18. Luo, G. D., Li, W., Zheng, L. X., Cheng, Y. H., Funakoshi, S. and Yajima, H. (1987) Studies on superoxide dismutase. I. Purification and properties of superoxide dismutase from Azotobacter vinelandii-230. Chem. Pharm. Bull. 35, 4229-4234 https://doi.org/10.1248/cpb.35.4229
  19. Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Miller, A. F. (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8, 162-168 https://doi.org/10.1016/j.cbpa.2004.02.011
  21. Moosavi-Nejad, S. Z., Moosavi-Movahedi, A. A., Rezaei-Tavirani, M., Giovanni, F. and Rosaria, M. (2002) Conformational lock and dissociative thermal inactivation of lentil seedling amino oxidase. J. Biochem. Mol. Biol. 36, 167-172
  22. Poltorak, O. M., Chukhray, E. S. and Torshin, I. Y. (1998) Dissociative thermal inactivation, stability, and activity of oligomeric enzymes. Biochemistry (Moscow) 63, 303-311
  23. Poltorak, O. M., Chukhrai, E. S., Kozlenkov, A. A, Chaplin, M. F. and Trevan, M. D. (1999a) The putative common mechanism for inactivation of alkaline phosphatase isoenzymes. J. Mol. Catalysis. B-Enzym. 7, 157-163 https://doi.org/10.1016/S1381-1177(99)00038-7
  24. Poltorak, O. M., Chukhray, E. S., Torshin, I. Y., Atyaksheva, L. F., Trevan, M. D. and Chaplin, M. F. (1999b) Catalytic properties, stability and the structure of the conformational lock in the alkaline phosphatase from Escherichia coli. J. Mol. Catalysis. B-Enzym. 7, 165-172 https://doi.org/10.1016/S1381-1177(99)00039-9
  25. Rigo, A., Marmocchi, F., Cocco, D., Viglino, P. and Rotilio, G. (1978) On the quaternary structure of copper-zinc superoxide dismutases. Reversible dissociation into protomers of the isozyme I from wheat germ. Biochemistry 175, 534-537 https://doi.org/10.1021/bi00596a025
  26. Segel, I. H. (1995) Effects of pH and temperature; in Enzyme kinetics, pp. 926-942, John Wiley & Sons press, New York, USA
  27. Wallace, A. C., Laskowski, R. A. and Thornton, J. M. (1995) LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering 8, 127-134 https://doi.org/10.1093/protein/8.2.127
  28. Yuan, Z. B. and Gao, R. M. (1997) Kinetics and mechanism of pyrogallol autoxidation. Chemical J. Chinese Universities 18, 1438-1441
  29. Zou, G. L., Gui, X. F., Zhong, X. L. and Zhu, Y. F. (1986) Improvements in pyrogallol autoxidation method for the determation of SOD activity. Prog. Biochem. Biophys. 4, 71-73

Cited by

  1. Effect of 2-hydroxypropyl-β-cyclodextrin on thermal stability and aggregation of glycogen phosphorylase b from rabbit skeletal muscle vol.93, pp.11, 2010, https://doi.org/10.1002/bip.21508
  2. Thermal inactivation and conformational lock studies on glucose oxidase vol.24, pp.4, 2013, https://doi.org/10.1007/s11224-012-0136-6
  3. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: Structural mechanism vol.58, 2013, https://doi.org/10.1016/j.ijbiomac.2013.03.038
  4. Copper, zinc superoxide dismutase of Curcuma aromatica is a kinetically stable protein vol.49, pp.8, 2014, https://doi.org/10.1016/j.procbio.2014.04.010