콜타르 오염토양의 슬러리상 생물반응기에서 처리수 재순환에 따른 효율 평가

Effect of Recycled-Water Addition on Treatment Efficiency of Coal Tar-Contaminated Soil with Slurry Phase Bioreactor

  • 투고 : 2005.08.25
  • 심사 : 2005.09.05
  • 발행 : 2005.10.10

초록

본 연구는 콜타르로 오염된 토양을 슬러리상 생물반응기로 처리할 때에 재순환수 첨가가 미치는 영향을 평가하고자 실시하였다. 실험실 규모의 슬러리상 생물반응기는 미생물활성이 최적으로 유지될 수 있도록 설정하였으며, 실험에 사용된 토양은 사질양토였다. 토양내의 콜타르와 14가지 PAHs 화합물의 농도는 가스크로마토그래피를 이용하여 분석하였다. 슬러리상 생물반응기는 2000 mg/kg 농도에서 재순환수 첨가의 영향이 미미하였다. 그러나 20000 mg/kg에서는 뚜렷한 효과를 나타내어 재순환수를 첨가한 경우의 1차반응속도상수와 제거율은 재순환수를 첨가하지 않은 경우 보다 각각 2.5배와 2.0배 정도가 증가되었다. 슬러리상 생물반응기에서 콜타르는 휘발(3.8~16.0%)과 분해(84.0~96.2%)에 의하여 제거되었으며, 분해에 의한 제거가 약 85% 이상이 되므로 주로 생물학적인 분해반응에 의하여 제거가 되는 것으로 평가되었다. 재순환수를 첨가한 경우에 고리수에 따른 PAHs 화합물의 제거에서 고리수가 3개인 경우에는 92.2~99.7%로 높은 제거율을 나타내었으며, 4개 이상의 고리수를 가진 화합물들은 분해되지 않거나 30% 미만으로 분해되었다.

This research was conducted to evaluate the effect of recycled-water addition on the treatment of coar tar-contaminated soil with slurry phase bioreactor. A bench-scale slurry phase bioreactor was maintained to optimize the microbial growth. Silty loam soil was used for this research. Concentrations of coal tar and 14 target PAHs (Polyunclear Aromatic Hydrocarbons) in the soil were determined with gas chromatography. Addition of recycled-water to slurry phase bioreactor was not significantly increased the removal efficiency of 2000 mg coar tar/kg. However, it significantly increased the removal efficiency of 20000 mg coar tar/kg. In 20000 mg coar tar/kg, the first order kinetic constant and the removal efficiency of the reactor with recycled-water addition were 2.5 and 2.0 times higher than those of the reactor without recycled- water addition. Coar tar in the slurry phase bioreactor was removed in 3.8~16.0% by vaporization and biodegraded in 84.0~96.2%. Removal efficiency of 3-ring compounds was high as 92.2~99.7% in the case of recycled-water addition. However, removal efficiencies of 3 and 4-ring compounds were low as 0~30%.

키워드

참고문헌

  1. J. T. Cookson, Jr., Bioremediation Engineering: Design and Application, McGRAW-HILL Inc., 117, New York (1995)
  2. R. Ambrosoli, L. Petruzzelli, J. L. Minati, and F. A. Marsan, Chemosphere, 60, 1231 (2005) https://doi.org/10.1016/j.chemosphere.2005.02.030
  3. R. J. Watts, Hazardous Waste, John Wiley & Sons, Inc., 4, New York (1997)
  4. L. Tang, X.-Y. Tang, Y.-G. Zhu, M.-H. Zheng, and Q.-L. Miao, Environ. International, 31, 822 (2005) https://doi.org/10.1016/j.envint.2005.05.031
  5. W. W. Kovalick, Jr., Applications of New Technologies at Hazardous Waste Sites, Innovative Treatment Technologies : Annual Status Report, 7th ed., 128, EP A/542/R/95/008 (1995)
  6. M. D. LaGrega, P. L. Buckingham, and J. C. Evans, Hazardous Waste Management, McGRAW-HILL Inc., 603, New York (1994)
  7. R. Boopathy, International Biodeter. & Biodegra., 55, 293 (2005) https://doi.org/10.1016/j.ibiod.2005.03.006
  8. R. C. Loehr, Bioremediation of PAH Compounds in Contaminated Soil, ed. P. T. Kostecki and E. J. Calabrese, Lewis Publishers, 213, New York (1991)
  9. K. J. Na, Master Dissertation, Konkuk Univ., Seoul, Korea (1999)
  10. D. Pinelli, F. Fava, M. Nocentini, and G. Pasquali, Jr. Soil Contamination, 6, 243 (1997)
  11. E. Y. Hwang, Ph. D. Dissertation, Konkuk Univ., Seoul, Korea (1999)
  12. E. A. Paul and F. E. Clark, Soil Microbiology and Biochemistry, 59, Academic Press Inc., London (1989)
  13. M. Findlay, S. Fogel, L. Conway, and A. Taddur, Field Treatment of Coal Tar-Contaminated Soil Based on Results of Laboratory Treatability Studies, ed. L. Y. Young and C. E. Cemigla, 269, John Wiley & Sons, Inc., New York (1995)
  14. J. G. Mueller, S. E. Lantz, B. O. Blattmann, and P. J. Chapman, Environ. Sci. Technol., 25, 1055 (1991) https://doi.org/10.1021/es00018a006
  15. A. L. Juhasz, G. A. Stanley, B. Davey, and M. L. Britz, Global Environmental Biotechnology, ed. D. L. Wise, 475, Kluwer Academic Publishers, Boston (1997)