Synthesis, crystal structure, and thermal property of piperazine-templated copper(II) sulfate, {H2NCH2CH2NH2CH2CH2}{Cu(H2O)6}(SO4)2

  • Kim, Chong-Hyeak (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Park, Chan-Jo (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Lee, Sueg-Geun (Center for Chemical Analysis, Korea Research Institute of Chemical Technology)
  • Received : 2005.07.22
  • Accepted : 2005.08.30
  • Published : 2005.10.25

Abstract

The title compound, $\{H_2NCH_2CH_2NH_2CH_2CH_2\}\{Cu(H_2O)_6\}(SO_4)_2$, I, has been synthesized under solvo/hydrothermal conditions and their crystal structure analyzed by X-ray single crystallography. Compound I crystallizes in the monoclinic system, $P2_1/n$ space group with a = 6.852(1), b = 10.160(2), $c=11.893(1){\AA}$, ${\beta}=92.928(8)^{\circ}$, $V=826.9(2){\AA}^3$, Z = 2, $D_x=1.815g/cm^3$, $R_1=0.031$ and ${\omega}R_2=0.084$. The crystal structure of the piperazine templated Cu(II)-sulfate demonstrate zero-dimensional compound constituted by doubly protonated piperazine cations, hexahydrated copper cations and sulfate anions. The central Cu atom has a elongated octahedral coordination geometry. The crystal structure is stabilized by three-dimensional networks of the intermolecular $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reaction of compound I was analyzed to have three distinctive stages.

Keywords

References

  1. A. K. Cheetham, G. Ferey, T. Loiseau, Angew. Chem., Int. Ed., 38, 3268 (1999). https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
  2. A. Clearfield, Chem. Rev., 88, 125 (1988) https://doi.org/10.1021/cr00083a007
  3. G. Alberti, 'Comprehensive Supramolecular Chemistry', Vol. 7, Chap. 4 & 5, J. L. Atwood, J. E. D. Davies, D. D. MacNicol, and F. Vogtle, Eds., Pergamon Press, New York, U.S.A. (1996)
  4. C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed., 43, 1466 (2004) https://doi.org/10.1002/anie.200390640
  5. S. M. Walker, P. S. Halasyamani, D. O'Hare, J. Am. Chem. Soc., 121, 7415 (1999) https://doi.org/10.1021/ja9912271
  6. T. Conradsson, X. Zou, M. Dadachov, Inorg. Chem., 39, 1716 (2000) https://doi.org/10.1021/ic9911217
  7. S. Ekambarem, S. Sevov, Inorg. Chem., 39, 2405 (2000) https://doi.org/10.1021/ic991367b
  8. A. Choudhury, U. Kuma, C. N. R. Rao, Angew. Chem., Int. Ed., 41, 158 (2002) https://doi.org/10.1002/1521-3773(20020104)41:1<158::AID-ANIE158>3.0.CO;2-#
  9. M. I. Khan, S. Cevik, R. J. Doedens, Inorg. Chim. Acta, 292, 112 (1999). https://doi.org/10.1016/S0020-1693(99)00166-8
  10. A. J. Norquist, P. M. Thomas, M. B. Doran, D. O'Hare, Chem. Mater., 14, 5179 (2002) https://doi.org/10.1021/cm020793j
  11. Y. Xing, Z. Shi, G. Li, W. Pang, J. Chem. Soc., Dalton Trans., 940 (2003)
  12. J. N. Behera, K. V. Gopalkrishnan, C. N. R. Rao, Inorg. Chem., 43, 2636 (2004) https://doi.org/10.1021/ic035488u
  13. M. B. Doran, A. J. Norquist, D. O'Hare, Inorg. Chem., 42, 6989 (2003) https://doi.org/10.1021/ic034540j
  14. K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', Part B, John Wiley & Sons, New York, U.S.A. (1997)
  15. Siemens, XSCANS Data Collection Package, Siemens, Karlsruhe, Germany (1996)
  16. Siemens, SHELXTL Structure Analysis Package, Siemens, Karlsruhe, Germany (1998)
  17. G. M. Sheldrick, Acta Cryst., A46, 467 (1990) https://doi.org/10.1107/S0108767390000277
  18. G. Paul, A. Choudhury, R. Nagarajan, C. N. R. Rao, Inorg. Chem., 42, 2004 (2003) https://doi.org/10.1021/ic020645v
  19. K. Jayaraman, A. Choudhury, C. N. R. Rao, Solid State Sci., 4, 413 (2002) https://doi.org/10.1016/S1293-2558(02)01269-4