Determination of radiolysis products in Tri-Octyl Amine by high performance liquid chromatography-mass spectrometer

HPLC-MS에 의한 Tri-Octyl Amine(TOA)의 방사선 분해산물 정량

  • Received : 2005.02.26
  • Accepted : 2005.04.13
  • Published : 2005.06.25

Abstract

Tri-octyl amine (TOA) is used in solvent extraction process for radioactive waste. This compound may be degraded to di-octyl amine (DOA), mono-octyl amine (MOA) by radioactive materials. Amount of TOA, DOA and MOA in TOA must be monitored because they production of these compounds means degradation of which leads to a decrease in the extraction yield. Retention behavior for TOA, DOA and MOA are studied with Phenomenex LUNA-$C_{18}$ ($4.6mm{\times}25cm$) analytical column and $CH_3OH:H_2O$ (50 mmol $CH_3COONH_4$) eluent by liquid chromatography. Optimum condition for these compounds is $CH_3OH:H_2O$ (50 mmol $CH_3COONH_4$) = 85 : 15 ratio. TOA, DOA and MOA compounds is well separated within 20 minute. Dynamic range is $30{\sim}160{\mu}g/mL$ for TOA, $5{\sim}100{\mu}g/mL$ for DOA and $0.1{\sim}5{\mu}g/mL$ for MOA, respectively. The detection limit are $0.1{\mu}g/mL$ for TOA, $1{\mu}g/mL$ for DOA (in SCAN mode) and $0.1{\mu}g/mL$ for MOA (in SIM mode) in this system with $20{\mu}L$ sample loop.

TOA의 방사선 분해산물중 TOA, DOA 및 MOA 함량을 액체크로마토그래피-질량분석기로 정량 분석하였다. Phenomenex LUNA-$C_{18}$ 분리관에서 $CH_3OH$$H_2O$(50 mmol $CH_3COONH_4$) 혼합용액을 이동상으로 하여 TOA, DOA 및 MOA의 머무름 거동을 살펴보았으며, 이동상의 부피비가 85 : 15일 때 방사선 분해산물의 분리가 가장 효율적이었다. MOA, DOA 및 TOA의 분리봉우리는 각각 2.7분, 4.3분, 그리고 16.6분에서 나타났으며, 측정 농도범위는 $30{\sim}160{\mu}g/mL$가 적합하였다. 이 범위에서 검량곡선은 $r2=0.999$의 좋은 상관관계를 보여주었으며, 시료량 $20{\mu}L$를 취할 경우에 SCAN mode에서 TOA, DOA 의 검출한계는 각각 $0.1{\mu}g/mL$, $1{\mu}g/mL$이었고, SIM mode에서 MOA의 검출한계는 $0.1{\mu}g/mL$이었다.

Keywords

References

  1. V. S. Shmidt, 'Amine Extraction', Israel Program for Scientific Translations Ltd. Jerusalem, 1971
  2. A. K. De, S. M. Khopkar and R. A. Chalmers, 'Chapter 10 in Solvent Extraction of Metals', Van Nostrand Reinhold Co., London, 1970
  3. J. E. Ruch and F. E, Anal. Chem., 33(11), 1569(1961) https://doi.org/10.1021/ac60179a034
  4. G. R. Umbreit, Anal. Chem., 33(11), 1572(1961) https://doi.org/10.1021/ac60179a035
  5. A. Elias, M. A. Didi, D. Villemin and A. Hamidi, Hydrometallurgy, 63, 49(2002) https://doi.org/10.1016/S0304-386X(01)00202-X
  6. F. E. Critchfield and J. B. Johnson, Anal. Chem., 28(4), 430(1956) https://doi.org/10.1021/ac60114a008
  7. W. F. Wagner and W. B. Kauffman, Anal. Chem., 25(4), 538(1953) https://doi.org/10.1021/ac60078a030
  8. S. H. Han, H. J. Lee, H. B. Y,ang, Y. S. Park and K. S. Joe, Anal. Sci. & Techol., 15(4), 329(2002)
  9. H. B. Yang, I. H. Lee and H. S. Moon, J. Liq. Chromatogr. Relat. Technol., 26(15), 2593(2003) https://doi.org/10.1081/JLC-120023803
  10. Wallace Davis, Jr., 'Radiolytic Behavior, in Science and Technology of Ttributyl Phosphate', Vol. I, W. W. Schulz, L. L. Burger and J. D. Navratil (eds.), Chap. 7, CRC press, Bora Raton, Florida, 1984