실리카라이트 폼에 담지된 MFI 제올라이트 촉매의 제조와 n-옥탄 분해반응에서 이들의 촉매 성질

Preparation of MFI Zeolite Catalyst Supported on Silicalite Foam and Its Catalytic Property in the Cracking of n-Octane

  • 정재식 (전남대학교 응용화학공학부) ;
  • 최동배 (전남대학교 응용화학공학부) ;
  • 송경근 (전남대학교 응용화학공학부) ;
  • 하광 (전남대학교 응용화학공학부) ;
  • 송요순 (전남대학교 응용화학공학부) ;
  • 서곤 (전남대학교 응용화학공학부)
  • Jung, Je Sik (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University) ;
  • Choi, Dong Bae (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University) ;
  • Song, Kyeong Keun (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University) ;
  • Ha, Kwang (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University) ;
  • Song, Yo Soon (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University) ;
  • Seo, Gon (Department of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University)
  • 투고 : 2005.05.18
  • 심사 : 2005.05.31
  • 발행 : 2005.08.31

초록

실리카라이트 폼에 $0.2{\mu}m$ 정도의 가는 MFI 제올라이트 입자를 담지하여 만든 폼(foam) 촉매에서 n-옥탄의 분해반응을 조사하였으며, 생성물 분포에 Delplot 기법을 적용하여 반응기구를 고찰하였다. 담지된 MFI 제올라이트의 Si/Al 몰비는 25로 추정되며, 담지량은 실리카라이트 폼의 25 wt%이었다. 겉보기 밀도는 $0.11g{\cdot}cm^{-3}$로 낮아 촉매 충전량을 0.02 g에서부터 0.5 g까지 바꿀 수 있어서 압력손실 없이 반응물과 생성물의 체류시간을 폭 넓게 조절하였다. 촉매 충전량이 많아지면 n-옥탄의 전환율과 올레핀 수율이 높아졌다. 촉매를 조금 사용하였을 때 생성물 분포는 단순하여 양성자 분해기구로 설명할 수 있었다. 촉매 사용량이 많아지면 분해 생성물의 추가 반응이 진행되어 반응성이 낮은 올레핀과 파라핀의 함량이 많아지며 생성물 분포가 복잡해졌다.

Foam-type MFI zeolite catalyst was prepared by dispersing fine ($-0.2{\mu}m$) particles of MFI zeolite on silicalite foam. Catalytic cracking of n-octane was investigated over the foam-type catalyst and Delplot method was employed to interpret product compositions for deducing reaction mechanism. The Si/Al molar ratio of dispersed MFI zeolite was estimated 25 and its dispersed amount of silicalite foam was 25 wt%. Since the apparent density of the foam type catalyst was very low $0.11g{\cdot}cm^{-3}$, the catalyst loading amount could be varied from 0.02 g to 0.5 g without concerning pressure drop, providing a wide variance in the residence time of the reactants and products. The conversion and olefin yield in the catalytic cracking of n-octane increased with the catalyst loading. The product composition was very simple and could be explained by applying the protolytic cracking mechanism when the catalyst loading was small. Higher loading of the catalyst brought about further reactions of cracked products, accumulating lower olefin and paraffin with low reactivity in product stream and resulting in complex product composition.

키워드

과제정보

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. Breck, D. W., 'Zeolite Molecular Sieves,' Wiley, New York, 725- 755(1974)
  2. Yoshimura, Y., Kijima, N., Hayakawa, T., Murata, K., Suzuki, K., Mizukami, F., Matano, K., Konishi, T., Oikawa, T., Saito, M., Shiojima, T., Shiozawa, K., Wakui, K., Sawada, G., Sato, K., Matsuo, S. and Yamaoka, N., 'Catalytic Cracking of Naphtha to Light Olefins,' Catal. Surv. Jpn., 4(2), 157-167(2000) https://doi.org/10.1023/A:1011463606189
  3. Park, Y. K., Jeon, J. Y., Han, S. Y., Kim, J. R. and Lee, C. W., 'Catalytic Cracking of Naphtha into Light Olefins,' Korean Chem. Eng. Res., 41(5), 549-557(2003)
  4. Corma, A. and Orchilles, A. V., 'Current Views on the Mechanism of Catalytic Cracking,' Micropor. Mesopor. Mater., 35-36, 21-30(2000) https://doi.org/10.1016/S1387-1811(99)00205-X
  5. Song, Y. S. and Seo, G., 'A Study on the Search Methods for Reaction Pathways,' J. Res. Ins. Catal. (Chonnam National Univ.), 24, 17-25(2003)
  6. Degnan, T. F., Chitnis, G. K. and Schipper, P. H., 'History of ZSM- 5 Fluid Catalytic Cracking Additive Development at Mobil,' Micropor. Mesopor. Mater., 35-36, 245-252(2000) https://doi.org/10.1016/S1387-1811(99)00225-5
  7. Jung, J. S., Kim. T. J. and Seo, G., 'Catalytic Cracking of n- Octane over Zeolites with Different Pore Structures and Acidities,' Korean J. Chem. Eng., 21(4), 777-781(2004) https://doi.org/10.1007/BF02705520
  8. Lee, Y. J., Lee, J. S., Park, Y. S. and Yoon, K. B., 'Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures,' Adv. Mater., 13(16), 1259-1263(2001) https://doi.org/10.1002/1521-4095(200108)13:16<1259::AID-ADMA1259>3.0.CO;2-U
  9. Matsukata, M., Ogura, M., Osaki, T., Hari Prasad Rao, P. R., Nomura, M. and Kikuchi, E., 'Conversion of Dry Gel to Micropore Crystals in Gas Phase,' Top. Catal., 9(1-2), 77-92(1999) https://doi.org/10.1023/A:1019106421183
  10. Jung, J. S., Park, J. W. and Seo, G., 'Catalytic Cracking of n- Octane over Alkali-Treated MFI Zeolites,' Appl. Catal. A: General, 288, 149-157(2005) https://doi.org/10.1016/j.apcata.2005.04.047
  11. Treacy, M. M. J. and Higgins, J. B., 'Collection of Simulated XRD Powder Patterns for Zeolites,' 4th rev. ed., Elsevier(2001)
  12. Sawa, M., Niwa, M. and Murakami, Y., 'Derivation of New Theoretical Equation for Temperature-Programmed Desorption of Ammonia with Freely Occurring Readsorption,' Zeolites, 10(4), 307(1990) https://doi.org/10.1016/0144-2449(94)90147-3