CO2 초임계 유체에서 열식법을 이용한 다공성 폴리프로필렌 막의 제조

Preparation of Porous Polypropylene Membrane by a Thermally Induced Phase Separation Method in Supercritical CO2

  • 이상준 (성균관대학교 화학공학과) ;
  • 정재관 (성균관대학교 화학공학과)
  • Lee, Sang-Joon (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Chung, Jaygwan G. (Department of Chemical Engineering, Sungkyunkwan University)
  • 투고 : 2004.06.28
  • 심사 : 2004.11.01
  • 발행 : 2005.02.28

초록

$CO_2$ 초임계 유체에서 열식법을 이용하여 폴리프로필렌과 켐펜을 혼합하여 다공성 폴리프로필렌 막을 제조했다. 폴리프로필렌 농도 10 wt%의 조건에서 제조된 폴리프로필렌 막의 공극률은 메탄올, 에탄올, n-부탄올에 따라 각각 78, 80, 73%였다. 폴리프로필렌의 농도가 증가할수록 인장강도는 높아졌으며 폴리프로필렌 농도가 10 wt% 일 때 인장강도는 $0.17kg_f/mm^2$였다. $CO_2$ 초임계 유체를 사용하여 켐펜을 추출한 결과 시간에 따라 추출속도가 증가하였으며 5분 경과 후 94% 제거되었다. 온도가 증가함에 따라 추출속도가 증가했으며 $45^{\circ}C$ 조건에서 99% 제거되었다. 그러나 그 이상의 높은 온도에서는 추출속도는 저하되었다. 150 bar의 압력까지는 압력이 증가함에 따라 켐펜의 추출속도는 증가하였으나, 그 이상의 압력 조건에서는 압력이 증가함에 따라 추출속도는 미소하게 감소했다. 추출속도는 $CO_2$ 초임계 유체의 켐펜에 대한 용해도 특성과 상관성이 있었다.

Porous polypropylene membranes were prepared by a thermally induced phase separation method in super-critical $CO_2$, where polypropylene and Camphene were used as raw materials. The porosity of polypropylene membranes with 10 wt% polypropylene concentration was 78, 80, 73% by using methanol, ethanol, and n-buthanol as an analytical solvent, respectively. The tensile strength increased with an increasing polypropylene concentration, where it was $0.17kg_f/mm^2$ at 10 wt% polypropylene concentration. The extraction rate for Camphene increased with time and Camphene was removed 94% in 5 min. It increased with an increasing temperature and was 99% at $45^{\circ}C$, however, decreased with an increasing temperature at higher than $45^{\circ}C$. The extraction rate increased with an increasing pressue up to 150 bar, however, decreased slightly with an increasing pressure over 150 bar. The extraction rate had a relation with the solubility of Camphene in supercritical $CO_2$.

키워드

참고문헌

  1. Kang, M. H., Chai, H. N. and Yang, W. K., 'Relationship on Ionic Conductivity and Ionic Permeability through Polymer Membrane,' Appl. Chem., 6(1), 328-331(2002)
  2. Park, H. B. and Lee, Y. M., 'Polymer Electrolyte Membranes for Fuel Cell,' J. Korean Ind. Eng. Chem., 13(1), 1-11(2002)
  3. Lee, S. G., Lee, J. H., Choi, K. Y. and Rhee, J. M., 'Phase Inversion Behavior of Polypropylene/Polystyrene Blends', Polymer(Korea), 22(2), 258-268(1998)
  4. Bae, B., Chun, B. H., Ha, H. Y., Oh, I. H. and Kim, D., 'Preparation and Characterization of Plasma Treated PP Composite Electrolyte Membranes,' J. Membr. Sci., 202(1-2), 245-252(2002) https://doi.org/10.1016/S0376-7388(01)00624-X
  5. Yang, M. C. and Perng, J. S., 'Microporous Polypropylene Tubular Membranes via Thermally Induced Phase Separation using a Novel Solvent-Camphene,' J. Membr. Sci., 187(1-2), 13-22(2001) https://doi.org/10.1016/S0376-7388(01)00425-2
  6. Matsuyama, H., Yuasa, M., Kitamura, Y., Teramoto, M. and Lloyd, D. R., 'Structure Control of Anisotropic and Asymmetric Polypropylene Membrane Prepared by Thermally Induced Phase Separation,' J. Membr. Sci., 179(1-2), 91-100(2000) https://doi.org/10.1016/S0376-7388(00)00514-7
  7. Evren, V., 'A Numerical Approach to the Determination of Mass Transfer Performances through Partially Wetted Microporous Membranes: Transfer of Oxygen to Water,' J. Membr. Sci., 175(1), 97-110(2000) https://doi.org/10.1016/S0376-7388(00)00401-4
  8. Kim, H. J., Kang. Y. S. and Kim, J. J., 'Polymeric Microporous Membranes,' Polym. Sci. Technol., 2(2), 81-87(1991)
  9. Atkinson, P. M. and Lloyd, D. R., 'Anisotropic Flat Sheet Membrane Formation via TIPS: Atmospheric Convection and Polymer Molecular Weight Effects,' J. Membr. Sci., 175(2), 225-238(2000) https://doi.org/10.1016/S0376-7388(00)00422-1
  10. Kim, J. R. and Kyong, J. B., 'Solubilities of Solids in Supercritical Fluids,' J. Korean. Chem. Soc., 34(4), 325-330(1990)
  11. Lee, J. S., Jeon, B. J., Jung. I. H. and Hong, I. K., 'Determination of Diffusion Coefficients of Extracts in Supercritical Carbon Dioxide,' J. Korean Ind. Eng. Chem., 6(2), 320-330(1995)
  12. Matsuyama, H., Yano, H., Maki, T., Teramoto, M., Mishima, K. and Matsuyama, K., 'Formation of Porous Flat Membrane by Phase Separation with Supercritical $CO_2$,' J. Membr. Sci., 194(2), 157-163(2001) https://doi.org/10.1016/S0376-7388(01)00436-7
  13. Matsuyama, H., Yamamoto, A., Yano, H., Maki, T., Teramoto, M., Mishima, K. and Matsuyama, K., 'Effect of Organic Solvents on Membrane Formation by Phase Separation with Supercritical $CO_2$,' J. Membr. Sci., 204(1-2), 81-87(2002) https://doi.org/10.1016/S0376-7388(02)00182-5
  14. Lee, S. B., Kim, H. J., Jung, I. H. and Hong, I. K., 'Preparation of High Performance Membrane using Supercritical Carbon Dioxide and Gas Permeability of the Membrane,' Theories and Applications of Chem. Eng., 1(1), 912-915(1995)
  15. Matsuyama, H., Maki, T., Teramoto, M. and Asano, K., 'Effect of Polypropylene Molecular Weight on Porous Membrane Formation by Thermally Induced Phase Separation,' J. Membr. Sci., 204(1-2), 323-328(2002) https://doi.org/10.1016/S0376-7388(02)00182-5
  16. Lee, S. J., Kim, M. S. and Chung, J. G., 'Characteristics of Microporous Polycarbonate Membrane Prepared by a Phase Inversion Method with Supercritical $CO_2$,' J. Korean Ind. Eng. Chem., 14(8), 1058-1063(2003)
  17. Shi, Q., Yu, M., Zhou, X., Yan, Y. and Wan, C., 'Structure and Performance of Porous Polymer Electrolytes Based on P(VDF-HFP) for Lithium Ion Batteries,' J. Power Sources, 103(2), 286-292(2002) https://doi.org/10.1016/S0378-7753(01)00868-0
  18. Kim, J. R., Kim, H. K. and Kyong, J. B., 'Solubilities of Naphthalene in Supercritical Fluids,' J. Korean. Chem. Soc., 32(4), 311-317(1988)
  19. Sun, Y. P., Supercritical Fluid Technology in Materials Science and Engineering, Marcel Dekker, Inc., New York, NY(2002)