HMCM-41 촉매에서 2,3-Dihydrobenzofuran 유도체의 합성

Synthesis of 2,3-Dihydrobenzofuran Derivatives over HMCM-41 Catalysts

  • 김형진 (전남대학교 응용화학공학부) ;
  • 서곤 (전남대학교 응용화학공학부) ;
  • 김정년 (전남대학교 응용화학공학부) ;
  • 최경호 (전남대학교 응용화학공학부)
  • Kim, Hyung Jin (School of Applied Chemical Engineering, Chonnam National University) ;
  • Seo, Gon (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jung-Nyun (School of Applied Chemical Engineering, Chonnam National University) ;
  • Choi, Kyung Ho (School of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2005.08.19
  • 심사 : 2005.10.27
  • 발행 : 2005.12.31

초록

HMCM-41 중간세공 물질(mesoporous material) 촉매를 사용하여 aryl methallyl ether로부터 의약품과 농약의 주요 중간체인 2,3-dihydrobenzofuran 유도체를 합성하였다. 산점 농도가 촉매 활성에 미치는 영향을 비교하기 위하여 Si/Al 몰비가 40과 50으로 다른 촉매를 제조하였으며, aryl methallyl ether에 다양한 치환기를 도입하여 벤젠 고리의 전자 밀도가 전환율과 수율에 미치는 효과를 조사하였다. 산점이 많아질수록 전환율은 높아졌으나, 2,3-dihydorbenzofuran 유도체의 수율과 직접 연관짓기는 어려웠다. 전자공여기의 치환으로 벤젠 고리의 전자 밀도가 높아지면 claisen 자리 옮김 반응이 빨라져서 2,3-dihydrobenzofuran 유도체가 많이 생성되었다. 반면, 전자흡인기가 치환되어 벤젠 고리의 전자 밀도가 낮아지면 산 촉매에 의해 aryl methallyl ether 분해 반응이 촉진되어 2,3-dihydrobenzofuran 유도체 대신 phenol 유도체가 생성되었다.

2,3-Dihydrobenzofuran derivatives, important intermediates of medicines and agricultural chemicals, were prepared from aryl methallyl ethers over MCM-41 mesoporous material catalysts. Two mesoporous materials with Si/Al mole ratios of 40 and 50 were prepared to investigate the effect of acid site concentration on their catalytic activities. Aryl methallyl ethers with various substituents on their benzene rings were used to investigate the effect of electron density on benzene ring on the conversion of the ethers and the yield of 2,3-dihydorbenzofuran derivatives. The catalyst with a high acid site concentration showed high conversions, but it is difficult to correlate the yield of the derivatives with the acid site concentration. The increase in the electron density of the benzene ring by introducing electron-donating groups accelerated Claisen rearrangement reaction, resulting in the enhanced yield of the derivatives. On the other hand, the decrease in the electron density by introducing electron-attracting groups accelerated the cracking reaction of aryl methallyl ether by acid catalysts, producing phenol derivatives rather than 2,3-dihydrobenzofuran derivatives.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Breck, D. w., Zeolite Molecular Sieves, Wiley, New York(1974)
  2. Dyer, A. An Introduction to Zeolite Molecular Sieves, Wiley, Chichester(1988)
  3. Holderich, W., Hesse, M. and Naumann, F., 'Zeolites: Catalysts for Organic Syntheses,' Angew. Chem. Int. Ed. Engl., 27(2), 226-246(1988) https://doi.org/10.1002/anie.198802261
  4. Kim, Y., Kim, C. and Yi, J., 'Comparison of Mesoporous Aluminas Synthesized Using Stearic Acid and Its Salts;' Korean J. Chem. Eng., 22(2), 321-327(2005) https://doi.org/10.1007/BF02701504
  5. Jung, K-H., Chung, KH., Kim, M-Y., Kim., J.-H. and Seo, G 'IR Study of the Secondary Reaction of Ethylene Oxide over Silver Catalyst Supported on Mesoporous Materia,' Korean J. Chem. Eng., 16(3), 396400(1999)
  6. Seo, G, Kim, T. J., Lim, S., Ko, C. H. and Ryoo, R., 'The Reduction of Dissolved Oxygen by Hydrazine over Platinum Catalyst Supported on Dispordered Mesoporous Materials:' Korean J. Chem. Eng., 15(6), 611-614(1998)
  7. Han, SH., Yang, J.-S. and Choung, S.-J., 'Studies on the Selective Catalytic Reduction of NO by Propylene over MCM-41 Supported Pt Catalyst;' Korean Chem. Eng. Res., 38(5), 578-584(2000)
  8. Jentys, A., Pham, N. H., Vmek, H., Englisch, M. and Lercher, J. A., 'Synthesis and Characterization of Mesoporic Materials Containing Highly Dispersed Cobalt;' Micropor. Mater., 6(1), 1317(1996)
  9. Armengol, E., Cano, M. L., Corma, A., Garcia, H. and Navarro, M. T. 'Mesoporous Aluminosilicate MCM-41 as a Convenient Acid Catalyst for Friedel-Crafts Alkylation of a Bulky Aromatic Compound with Cinnamyl Alcohof. J. Chem. Soc., Chem. Comm., (5),519-520(1995)
  10. Subrahmanyam, Ch., Viswanathan, B. and Varadarajan, T. K., 'Alkylation of Naphthalene with Alcohols over Acidic Mesoporous Solids; J. Mol. Catal. A: Chemical, 226(2), 155-163(2005) https://doi.org/10.1016/j.molcata.2004.08.051
  11. Selvam, P. and Dapurkar, S. E., 'Tertiary Butylation of Phenol over Mesoporous MeMCM-48 and MeMCM41(Me=Ga, Fe, Al or B) Solid Acid Catalysts;' Catal. Today, 96(3), 135-141(2004) https://doi.org/10.1016/j.cattod.2004.06.114
  12. Ravindra, D. B., Nie, Y. T., Jaenicke, S. and Chuah, G K., 'Isomerisation of a-Pinene Oxide over $B_2O_3/SiO_2$ and AI-MSU Catalysts:' Catal. Today, 96(3), 147-153(2004) https://doi.org/10.1016/j.cattod.2004.06.117
  13. Kugita, T., Jana, S. K., Owada, T., Hashimoto, N., Onaka, M. and Namba, S., 'Mesoporous Al-Containing MCM-41 Molecular Sieves: Highly Active Catalysts for Diels-Alder Reaction of Cyclopentadiene with ${\alpha},{\beta}$- Unsaturated AldehydeS;' Appl. Catal., A: General, 245(2), 353-362(2003)
  14. Onaka, M. and Yamasaki, R, 'Catalysis by Solid Acid: Selective Diels-Alder Reactions are Promoted by Mesoporous Aluminosilicate with Zinc Ions and Nanometer Honeycomb Openings'; Chem Lett., 6(3), 259-260(1998)
  15. Mikami, K., Ohmura, H. and Yamanaka, M., '(2,5)-Ene Cyclization Catalyzed by Mesoporous Solid Acids: Isotope Labeling Study and Ab Initio Calculation for Continuum from Concerted to Stepwise Ene Mechanisnf,' J. Org. Chern, 68(3), 1081-1088(2003) https://doi.org/10.1021/jo020634j
  16. Yadav, G D. and Murkute, A. D., 'Novel Efficient Mesoporous Solid Acid Catalyst UDCAT-4: Dehydration of 2-Propanol and Alkylation of Mesitylene' Langmuir, 20(26), 11607-11619(2004) https://doi.org/10.1021/la049586j
  17. Ryoo, R., 'Mesoporous Molecular Sieves;' Chem World, 38 (11), 26-29(1998)
  18. Park, S. E., 'Application of Mesoporous Molecular Sieves; 696 Korean Chem. Eng. Res., 38(11), 30-39(1998)
  19. Donnelly, D. M. X. and Meegan, M. J., Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Perga-monPress: Oxford, 4, 705-709(1984)
  20. Keay, B. A, Comprehensive Heterocyclic Chemistry, Katritzky, A. R, Rees, C. w., Scriven, E. F., Eds., Elsevier Science Ltd., New York, 2, 413-436(1996)
  21. Shulgin, A T. and Baker, A. w., 'Solvent Effects on the Claisen Rearrangement of ${beta}$-Methylallyl Phenyl Ether;' J. Org. Chem., 28(9), 2468-2469(1963) https://doi.org/10.1021/jo01044a521
  22. Harwood, L. M., 'An Investigation into the Regioselectivity of the Acid Catalysed Claisen Rearrangement of Methyl 4- and 5-Allyloxy-2-Hydroxybenzoate Derivatives;' J. Chem. Soc. Chem. Commun., (9), 530-532(1983)
  23. Widmer, U., Hansen, H. J. and Schmid, H., 'Charge Induced Rearrangement of Allylaryl Ethers with Trifluoroacetic Acid,' Helv. Chim. Acta, 56(7), 2644-2648 (1973) https://doi.org/10.1002/hlca.19730560747
  24. Nichols, D. E., Hoffinan, A J., Oberlender, R A. and Riggs, R. M., 'Synthesis and Evaluation of 2,3-Dihydrobenzofuran Analogs of the Hallucinogen 1(2,5-Dimethoxy-4-methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats',' J. Med. Chem., 29(2), 302-304(1986) https://doi.org/10.1021/jm00152a022
  25. Feoktistov, V. M., Bunina-Krivorukova, L. I. and Bal'yan, Kh, V., 'Condensation of Aromatic Compounds with Allylic Halides. XXIII. Preparation of p-Cresol ${\beta},{\gamma},{\gamma}$-D3-Allyl Ether and Its Rearrangement in the Presence of Lewis Acids,' Zh. Org. Khim., 14(4), 807-811(1978)
  26. Kim, K. M., Kim, II R and Ryu, E. K, 'One-pot Syntheses of 2,3-Dihydro-2,2-dimethylbenzofuran Derivatives;' Heterocycles, 36(3), 497-505(1993) https://doi.org/10.3987/COM-92-6172
  27. Kang, S. K., Kim, S. S., Choi, J.-K. and Yum, E. K., 'A Facile Synthesis of 7-Nitro-2,3-dihydrobenzojcjfurans' Bull. Korean Chem. Soc., 18(10), 1128-1130 (1997)
  28. Kataoka, K., Shiota, T., Takeyasu, T., Minoshima, T., Watanabe, K., Tanaka, H., Mochizuki, T., Taneda, K., Ota, M., Tanabe, H. and Yamaguchi, H., 'Potent Inhibitors of Acyl-CoA: Cholesterol Acyltransferase. 2. Structure-activity Relationships of Novel N(2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)amides:' J. Med Chem., 39(6), 1262-1270(1996) https://doi.org/10.1021/jm950828+
  29. Bernard, A. M., Cocco, M. T., Onnis, V. and Piras, P. P., '$MO(CO)_6$ Catalyzed One-pot Conversion of Allyl Aryl Ethers to DihydrobenzofuranS,' Synthesis, (1), 41-43(1997)
  30. Bernard, A. M., Cocco, M. T., Onnis, V. and Piras, P. P., 'Facile Synthesis of 2,2-Dimethylchromans by $Mo(CO)_6$-catalyzed Reaction of Aryl Prenyl Ethers,' Synthesis, (3), 256-258(1998)
  31. Kim, H. J., Seo, G, Kim, J. N. and Choi, K. H., 'HY Zeolite Catalyzed One-pot Synthesis of2,3-Dimethylbenzofurans from Aryl Methallyl EtherS:' Bull. Korean Chem. Soc., 25, 1726-1728(2004)
  32. Hartmann, M., Poppl, A. and Kevan, L., 'Formation and Stability of Ni(I) Ions in MCM-41 Mesoporous Molecu1ar Sieves;' J. Phys. Chem., 99(49), 17494-17496(1995) https://doi.org/10.1021/j100049a004
  33. Ryu, E. K., Kim, K. M., Kim, H. R, Song, J. H., Kim, J. N. and Kim, J. S., 'Preparation of Herbicidal Benzofuranylcyclohexane1,3-dione Derivatives;' PCT Int. Appl., WO 9403443(1994)
  34. Ariamala, G. and Balasubramanian, K. K., 'Photochemical Behaviour of 3,4-Epoxyprecocene-I and Related Epoxychromans,' Tetrahedron, 45(12), 3769-3774(1989) https://doi.org/10.1016/S0040-4020(01)89238-3