SNCR 공정에서 Sodium Salts 첨가제를 이용한 탈질반응 개선에 관한 연구

The Improvement of Denitrofication by Using Sodium Salts in the SNCR Process

  • 이승문 (연세대학교 화학공학 & CT연구소) ;
  • 박귀남 (연세대학교 화학공학 & CT연구소) ;
  • 곽태헌 (연세대학교 화학공학 & CT연구소) ;
  • 박진원 (연세대학교 화학공학 & CT연구소) ;
  • 산지브 마킨 (연세대학교 화학공학 & CT연구소) ;
  • 김병환 ((주)대우건설 기술연구소)
  • Lee, Seung Moon (Department of Chemical Engineering & Center for Clean Technology, Yonsei University) ;
  • Park, Kwinam (Department of Chemical Engineering & Center for Clean Technology, Yonsei University) ;
  • Kwak, Tae-Heon (Department of Chemical Engineering & Center for Clean Technology, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical Engineering & Center for Clean Technology, Yonsei University) ;
  • Makin, Sanjeev (Department of Chemical Engineering & Center for Clean Technology, Yonsei University) ;
  • Kim, Byung-Hwan (Institute of Daewoo E&C Co.)
  • 투고 : 2004.11.18
  • 심사 : 2004.12.30
  • 발행 : 2005.04.30

초록

본 연구에서 SNCR 공정에서 사용되는 NO의 농도는 500 ppm이며, 환원제로 Urea를 사용하였다. 또한 첨가제로 NaOH(sodium hydroxide), $Na_2CO_3$(sodium cabonate), $NaNO_3$(sodium nitrate), HCOONa(sodium formate), $CH_3COONa$(sodium acetrate)를 이용하여 온도와 첨가제에 따른 NO 저감 효율을 측정하고자 하였다. 이때의 NO 저감 온도의 범위는 $650-1,050^{\circ}C$이다. 환원제만 사용하였을 경우, NO의 저감 효율은 44%까지 증가하였으며, 환원제와 첨가제(NaOH)를 0.5 mol/L와 1 mol/L 사용하였을 경우, NO 저감 효율은 25%와 74%이상 증가하였다. 첨가제를 사용하지 않았을 경우보다 첨가제를 사용하였을 경우 NO의저감 효율은 증가하였다. 또한 NaOH>$Na_2CO_3$>$NaNO_3$>HCOONa, >CHCOONa 첨가제의 순으로 효율이 우수하였다. 첨가제를 사용할 경우 약 $900^{\circ}C$에서 $1,050^{\circ}C$의 온도범위에서 NO저감 효율이 65% 이상으로 나타났다. 온도 창의 범위는 약 $250^{\circ}C$의 범위로 나타났으며, 최저 효율은 약 20%이며 최대효율은 약 74%정도로 나타났다.

The efficiency of reducing nitric oxide using urea combined with alkali salt additives is reported in this study. The inlet concentration of NO is 500 ppm with air flow rates of 3 and 5 L/min. Reduction of NO was studied from 650 to $1,050^{\circ}C$ with urea concentrations of 0.3 to 1 mol/L. The efficiency for the reduction of NO increased by 44% when urea is added alone. A further increase in efficiency was observed in the presence of NaOH as additive in fact, the efficiency was increased by more than 25% and 75% when 0.5 mol/L and 1 mol/L NaOH were added with the urea. The efficiency for the reduction of NO increased with all additives, but descended in the order NaOH, $Na_2CO_3$, $NaNO_3$, HCOONa, and CHCOONa. The maximum efficiency of NaOH and $Na_2NO_3$ are 74% and 73%, respectively. All these additives did not alter the comparatively wide operating temperature window for reducing NO. However, sodium compounds do not shift the maximum NO concentration towards lower temperatures when the NO removal activity enhances.

키워드

참고문헌

  1. Lee, J. H., Lee, D. H. and Kang, H. C., 'Emission of Air Pollutants and PCDDs/DFs from Small Size Waste Incinerators,' J. Korea Society of Waste Management, 21(3), 181-190(2004)
  2. Brouwer, J., Heap, M. P., Pershing, D. W. and Smith, P. J., 'A Model for Prediction of Selctive Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Moxing Limitation in the Presence of CO,' SNCR paper for 26th Symposium( 2004)
  3. Lee, S. H. and Kim, K. L., 'A Case study on SNCR Operation form MSW Incineration Plant,' NERI, 6(1), 163-170(2001)
  4. Choi, S. W. and Choi, S. K., 'Characteristic of SNCR Process for $NO_x$ Control,' NERI, 6(1), 203-211(2001)
  5. Tchobanoglous G., Theisen, H. and Vigil, S. A., 'Integrated Solid Waste Management,' McGRAW-HILL, 644-650(2001)
  6. Moon, S. H., Lee, I. C., Choi,, I. S., Kim, S. C. and Choi, B. C., 'Reduction Technology of Nitrogen Oxide,' Chem. Ind. and Tech., 5(4), 62-70(1978)
  7. Korea Institute of Energy Research, 'Development of High Efficient Process for Simultaneous Removal of $SO_x$ and $NO_x$ Removal from Flue Gas(II),' MOST(1992)
  8. Kwon, H. B. and Kim, H. T., 'State of Stationary Combustion Nitrogen Oxide Control Technologies,' Environment Research Institute. Kyungnam Univ., 20, 151-187(1987)
  9. Choi, W. G., Lee, I. C. and Choi, I. S., 'Reduction Technology of Nitrogen Oxide; II,' Chem. Ind. and Tech., 6(4), 62-70(1988)
  10. Choi, W. G., Lee, I. C. and Choi, I. S., 'Reduction Technology of Nitrogen Oxide; III ,' Chem. Ind. and Tech., 7(4), 62-70(1989)
  11. Tree, D. R. and Clark, A. W., 'Advanced Reburning Measurements of Temperature and Species in a Pulverized Coal Flame,' Feul, 79(13), 1687-1695(2000)
  12. Muzio, L. J. and Quartucy, G. C., 'Implementing $NO_x$ Control: Research to Application,' Prog. Energy Combust. Sci., 23(3), 233- 266(1997) https://doi.org/10.1016/S0360-1285(97)00002-6
  13. Martin, O., Kim, D. J. and Jan, E. J., 'Influence of Mixing on the SNCR Process,' Chem. Eng. Sci., 52(15), 2511-2525(1997) https://doi.org/10.1016/S0009-2509(97)00069-9
  14. Rosenberg, H. S., 'The Characteristic Selective Catalytic Reduction Nitrogen Oxide over Natural Manganese Ore with $NH_3$ Low Temperature,' J. Korea Ind. Eng. Chem., 12(8), 841-845(2001)
  15. Ham, S. W., Park, H. H. and Mok, Y. S., 'Removal of Nitric Oxide Using Non-Thermal Plasma Technology,' J. Korea Ins. Chem. Eng., 37(5), 759-766(1999)
  16. Bilbao R., Oliva, M., Ibanez, J. C., Zapater, A., Millera, A. and Alzueta, M. U., 'The Use of Urea as Selective Non-Catalytic Reduction Agent to Reduce $NO_x$ Emissions,' Proceedings of the ICCS' 97, Essen, Germany, 1863-1866(1997)
  17. Alzueta, M., Bilbao, R., Millera, A., Oliva, M. and Ibanez, J. C., 'Interactions Between Nitric Oxide and Urea Under Flow Reactor Conditions,' Energy & Fuels, 12(5), 1001-1007(1998) https://doi.org/10.1021/ef980055a
  18. Chang, M. B., 'Low Temperature SNCR Process for $NO_x$ Control,' The Sci. Environ., 198(1), 73-78(1997)
  19. Rota, R. and Zanoelo, E. F., 'Influence of Oxygenated Additives on the $NO_xOUT$OUT Process Efficiency,'Fuel, 82(7), 765-770(2003) https://doi.org/10.1016/S0016-2361(02)00365-4
  20. Rota, R., Zanoelo, E. F., Antos, D., Morbidelli, M. and Carra, S., 'Analysis of Thermal $DeNO_x$ Process at High Partial Precess of Reactants,' Chem. Eng. Sci., 55(6), 1041-1051(2000) https://doi.org/10.1016/S0009-2509(99)00011-1
  21. Steven, S., Brown, H., Laine, B. and Crim, F. F., 'The HNCO Heat of Formation and the N-H and C-H Bond Enthalpies from State Selected Photodissociation', J. Chem. Phys., 105(18), 8103-8110(1996) https://doi.org/10.1063/1.472664
  22. Taraneh, N. I., 'Theoretical Study on the Mechanism of Removing Nitrogen Oxides Using Isocyanic Acid,' MS. D. Dissertation, East Tennessee State Univ., U.S.A.(2001)
  23. Mirosla, R., 'Reduction of Nitrogen Oxides in Flue Gases,' Environ. Pollut., 102(1), 685-689(1998) https://doi.org/10.1016/S0269-7491(98)80099-7
  24. Per, G. K., Peter, G. D. and Kim, J., 'Nitrogen Chemistry During Burnout in Fuel-Staged Combustion, ' Combust. Flame, 107(3), 211-222(1996) https://doi.org/10.1016/S0010-2180(96)00081-8
  25. Peter, G., Per, G. K., Sren, H. J. and Kim, D. J., 'A Flow Reactor Study of HNCO Oxidation Chemistry,' Combust. Flame, 98(3), 241- 258(1994) https://doi.org/10.1016/0010-2180(94)90239-9
  26. Zamansky, V. M., Lissianski, V. V. and Maly, P. M., 'Reactions of Sodium Species in the Promoted SNCR Process,' Combust. Flame, 117(4), 821-830(1999) https://doi.org/10.1016/S0010-2180(98)00127-8