수소/메탄 혼합 기체로부터 수소 분리를 위한 두 탑 PSA 실험과 전산 모사

Experiment and Simulation of 2-bed PSA for Hydrogen Separation from H2/CH4 Gas Mixture

  • 남기문 (한국과학기술연구원 청정기술연구센터) ;
  • 정병만 (한국과학기술연구원 청정기술연구센터) ;
  • 강석현 (한국과학기술연구원 청정기술연구센터) ;
  • 이창하 (연세대학교 화학공학과) ;
  • 이병권 (한국과학기술연구원 청정기술연구센터) ;
  • 최대기 (한국과학기술연구원 청정기술연구센터)
  • Nam, Gi-Moon (Clean & Technology Research Center, Korea Institute of Science and Technology) ;
  • Jeong, Byung-Man (Clean & Technology Research Center, Korea Institute of Science and Technology) ;
  • Kang, Seok-Hyun (Clean & Technology Research Center, Korea Institute of Science and Technology) ;
  • Lee, Chang-Ha (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Byung-Kwon (Clean & Technology Research Center, Korea Institute of Science and Technology) ;
  • Choi, Dae-Ki (Clean & Technology Research Center, Korea Institute of Science and Technology)
  • 투고 : 2004.09.22
  • 심사 : 2005.01.03
  • 발행 : 2005.04.30

초록

활성탄을 흡착제로 하여 2탑 6단계의 PSA(압력 순환식 흡착) 공정을 통하여 수소/메탄(부피비로 60%/40%)의 이성분 혼합기체에서 수소를 분리하는 연구를 수행하였다. PSA 공정에서 순도 및 회수율에 영향을 미치는 흡착압력, 공급 가스 유량, P/F 비를 변수로 하여 실험과 전산모사를 수행하였다. 본 공정에서 정상 상태는 15 cycle 이후에 도달하는 것을 알 수 있었다. P/F 비와 압력이 증가하고 공급 유량이 감소할 때 수소의 순도가 증가하였고, 반면에 회수율이 감소하는 것을 알 수 있었다. PSA 공정 전산 모사와 실험을 토대로 순도와 회수율이 최대일 때 최적의 PSA 운전 조건을 정하였다. 최적의 운전 조건은 공급가스의 유량이 22 LPM이고, 흡착 압력이 11 atm이며, P/F 비는 0.10으로 나타났고, 그 결과 수소의 회수율은 75% 이상 얻어졌으며, 순도는 99% 이상의 수소를 얻을 수 있었다. 본 연구에서는 비등온 비단열 상태를 고려하였으며, LDF(linear driving force) 모델과 LRC(loading ratio correlation) 등온식을 고려하여 실험과 예상치를 비교하였다.

A two-column six-step pressure swing adsorption(PSA) process was to study separation of hydrogen from hydrogen and methane($60_{vol}%/40_{vol}%$) binary system onto activated carbon adsorbent. The effects of the feed gas pressure, the feed flowrate and the P/F(purge to feed) ratio on the process performance were evaluated. The cyclic steady-states of PSA process were reached to after 15 cycles. $H_2$ purity increases according as the P/F ratio and pressure increase and the feed flow rate decreases; however, $H_2$ recovery shows an opposite phenomena to the purity. PSA process simulation studied to find optimum operation condition. In the results, 22 LPM feed flowrate, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75% recovery and 99% purity hydrogen. In this study was non-isothermal and non-adiabatic model considering linear driving force(LDF) model and Langmuir-Freundlich adsorption isotherm considered to compare between prediction and experimental data.

키워드

과제정보

연구 과제 주관 기관 : 에너지관리공단, 한국가스공사

참고문헌

  1. Jang, D. G., Shin, H. S., Kim, J. N., Cho, S. H. and Suh, S. S., 'An Analysis on Multibed Process for Hydrogen Purification,' HWAHAK KONGHAK, 37(6), 882-889(1999)
  2. Park, J. H., Kim, J. N. and Cho, S. H., 'Performance Analysis of Four-Bed $H_2$ PSA Process using Layered Beds,' AICHE J., 46(4), 790-802(2000) https://doi.org/10.1002/aic.690460413
  3. Sircar, S. and Kurma, R., 'Adiabatic Adsorption of Bulk Binary Gas Mixtures: Analysis by Constant Pattern Model,' Ind. Eng. Chem. Process Des., 22(2), 271-280(1983) https://doi.org/10.1021/i200021a017
  4. Yang, J. Y., Han, S. S., Cho, C. H. and Lee, H. J., 'Numerical Simulation of Adsorption Bed and Bed Dynamics for $H_2/CO$ Gas Mixture,' HWAHAK KONGHAK, 33(1), 56-68(1995)
  5. Yang, J. Y., Cho, C. H., Baek, K. H. and Lee, H. J., 'Comparision of One-bed and Two-bed $H_2$ PSA using Zeolite 5A,' HWAHAK KONGHAK, 35(4), 545-551(1997)
  6. Yang, R. T., Gas Separation by Adsorption Processes, Butterworth, Boston, MA(1987)
  7. Ahn, H., Lee, C. H., Seo, B., Yang, J. Y. and Baek, K., 'Backfill Cycle of a Layered Bed H2 PSA Process,' Adsorption, 5(4), 419- 433(1999) https://doi.org/10.1023/A:1008973118852
  8. Han, S. S. and Lee, H. J., 'A Study on Adsorption Equilibrium of $H_2/CO$ Mixture at Elevated Pressure,' HWAHAK KONGHAK, 33(6), 720-733(1995)
  9. Kunii, D. and Smith, J. M., 'Heat Transfer Characteristics of Porous Rocks,' AICHE J., 6(1), 71-78(1960) https://doi.org/10.1002/aic.690060115
  10. Skarstrom, C. W., 'Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption,' U. S. Patent No. 2,944,627(1960)
  11. Peiling, C. and Yang, R. T., 'Bulk Gas Separation by Pressure Swing Adsorption,' Ind. Eng. Chem. Fundam., 25(4), 758-767 (1986) https://doi.org/10.1021/i100024a047
  12. Marsh, W. D., Hoke, R. C., Pramuk, F. S. and Skarstrom, C. W., 'Pressure Equalization Depressuring in Heatless Adsorption,' U.S. Patent No. 3,142,547(1964)
  13. Doong, S. J. and Yang, R. T., 'Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models,' AICHE J., 32(3), 397-410(1986) https://doi.org/10.1002/aic.690320306
  14. Ruthven, D. M., Farooq, S. and Knaebel, K. S., Pressure Swing Adsorption, VCH publishers, New York(1994)
  15. Wakao, N. and Funazkri, T., 'Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds,' Chem. Eng. Sci., 33(10), 1375-1384(1978) https://doi.org/10.1016/0009-2509(78)85120-3
  16. Ruthven, D. M., Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York(1984)
  17. Mitchell, J. E. and Shendalman, L. H., 'A Study of Heatless Adsorption in the Model System $CO_2$ in He II,' AICHE Symp. Ser., 69 (134), 25-32(1973)
  18. Chihara, K. and Suzuki, M., 'Simulation of Nonisothermal Pressure Swing Adsorption,' J. Chem. Eng. Jpn., 16(1), 53-61(1983) https://doi.org/10.1252/jcej.16.53
  19. Glueckauf, E., 'Theory of Chromatography, Part 10. Formular for Diffusion into Sphere and Their Application to Chromatography,' Trans. Faraday Soc., 51, 1540-1551(1955) https://doi.org/10.1039/tf9555101540
  20. Kim, W. G., Yang, J. Y., Han, S. S., Cho, C. H., Lee, C. H. and Lee, H. J., 'Experimental and Theoretical Study on $H_2/CO_2$ Separation by a Five-Step One-Column PSA Process,' Korean J. Chem. Eng., 12(5), 503-511(1995)
  21. Yagi, S. and Kunii, D., 'Studies on Heat Transfer Near Wall Surface in Packed Beds,' AICHE J., 6(1), 97-104(1964) https://doi.org/10.1002/aic.690060119
  22. Malek, A. and Farooq, S. J., 'Determination of Equilibrium Isotherms using Dynamic Column Breakthrough and Constant Flow Equilibrium Desorption,' Chem. Eng. Data., 41(1), 25-32(1996) https://doi.org/10.1021/je950178e
  23. Yang, R. T. and Doong, S. J., 'Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation,' AICHE J., 31(11), 1829-1985(1985) https://doi.org/10.1002/aic.690311109
  24. Choi, B. Y., Lee, Y. W., Lee, B. K. and Choi, D. K., 'Adsorption Equilibria of Methane, Ethane, Ethylene, Nitrogen, and Hydrogen onto Activated Carbon,' J. Chem. Eng. Data, 48(3), 603-607(2003) https://doi.org/10.1021/je020161d
  25. Brunauer, S., Deming, L. S., Deming, W. E. and Teller, E. J. 'On Theory of The Van der Waals Adsorption Gases,' J. Am, Chem. Soc., 62(7), 1723-1732(1940) https://doi.org/10.1021/ja01864a025
  26. Ross, S. and Olivier, J. P., On Physical Adsorption, Wiley, New York(1964)
  27. Yang, J. Y., Han, S. S., Cho, C. H., Lee, C. H. and Lee, H. J., 'Bulk Separation of Hydrogen Mixtures by a One-column PSA Process,' Sep. Tech., 5(4), 239-249(1995) https://doi.org/10.1016/0956-9618(95)00128-X
  28. Lee, C. H., Yang, J. Y. and Ahn, H. W., 'Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas,' AIChE J., 45(3), 535-545(1999) https://doi.org/10.1002/aic.690450310
  29. Waldron, W. E. and Sircar, S., 'Parametric Study of a Pressure Swing Adsorption Process,' Adsorption, 6(2), 179-188(2000) https://doi.org/10.1023/A:1008925703871