A study on removal of 1,4-dioxane in drinking water by multi filtration system

다단계 필터시스템에서의 음용수 중 1,4-Dioxane 제거

  • Lee, Kang Jin (Water Analysis & Research Center, Woongjin coway CO. LTD.) ;
  • Pyo, Heesoo (Bioanalysis & Biotransformation Center, Korea Institute Science & Technology) ;
  • Yoo, Je Kang (Water Analysis & Research Center, Woongjin coway CO. LTD.) ;
  • Lee, Dae Woon (Department of Chemistry, Yonsei University)
  • 이강진 (웅진코웨이(주) 수질분석센터) ;
  • 표희수 (한국과학기술연구원, 생체대사연구센터) ;
  • 유제강 (웅진코웨이(주) 수질분석센터) ;
  • 이대운 (연세대학교 화학과)
  • Received : 2005.01.12
  • Accepted : 2005.02.21
  • Published : 2005.04.25

Abstract

Recently, 1,4-Dioxane is known as the contaminant in water plants in Korea. Owing to its toxicity and potential health effect, 1,4-Dioxane must be determined at very low levels in drinking water. Studies on the removal of 1,4-Dioxane in drinking water were performed by using multi filtration system with activated carbons and membrane filter. For extraction of 1,4-Dioxane, methyl-t-butyl ether (MTBE) was used and then analyzed using gas chromatography-mass selective detection (GC/MSD). Removal experiment was proceeded for 300 L with a sample volume of 30 L. At first. The removal was 70%, 95% and 100% after using activated carbon, membrane and second activated carbon respectively. At larger accumulated water fluxes, the removal rate decreased at each filter. After the flow volume was 300 L, the removal rate was 30%, 88% and 99% through the first activated carbon, membrane and second activated carbon respectively.

최근 국내 일부 정수장에서 검출된 것으로 보도되어진 바 있어 우리나라의 하천 수의 오염이 우려되고 있고, 일부 오염정도가 높은 하천수의 정화과정에서 제거가 완전히 이루어지지 않는 것으로 사료되는 1,4-dioxane은 그 독성과 음용수의 섭취량을 고려할 때 음용수 섭취로 인한 인체효과가 문제화 될 것으로 판단된다. 따라서 본 연구에서는 활성탄과 멤브레인으로 구성된 다단계 필터시스템에서 음용수 중에 존재하는 1,4-dioxane에 대한 제거효과에 대하여 연구하였다. 확인방법은 MTBE을 이용한 액체-액체 추출방법을 사용하였으며 제거실험은 압력별 필터단계별로 30 L마다 300 L 까지 실시하였다. 그 결과 초기에는 1차 활성탄 필터이후 70% 이상의 제거효과를 나타내었으며 멤브레인 이후 95%이상 그리고 2차 활성탄 이후 100% 제거되는 결과를 나타내었다. 그러나 통수량이 증가할수록 각 단계별 제거율은 점차 감소하였으며 300 L 통수 후 1차 활성탄에서 30%, 멤브레인 이후 88% 그리고 최종 활성탄 이후 99%의 제거율을 나타내었다.

Keywords

References

  1. Office of Pollution Prevention and Toxis Fact Sheet for 1,4-Dioxane., U.S. EPA, 749-F-95-010 (1995)
  2. T. K. G. Mohr. 'Solvent stabilizers(a draft white paper)' Water Supply Division of the Santa Clara Valley Water district, San jose, California 2001
  3. Integrated Risk Information System(IRIS) on 1,4-Dioxane. U. S. EPA., National Center for Environmenyal Assessment, Office of research and Development, Washington DC (1999)
  4. 'The Merck Index. An Encyclopedia of Chemicals, Drugs, and Biologicals.' 11th Ed., S. Budavari. Merck and Co. Inc., Rahway, NJ. 1989
  5. W. J. Lyman, W. F. Reehe, and D. H. Rosenblatt, 'Handbook of Chemical property Estimation Methods. Environmental behavior of Organic Components'. McGraw-Hill, NY, U.S.A., 1982
  6. E.L. Fincher and W.J. Payne, Microbiology, 10, 542 (1962)
  7. L. Y. Yoo, S. Fizsimmons, and M. Wehner. Proceedings of International Symmposium, AWWA water Quality Technology, Philadelphia, USA, (2003)
  8. Abe A, J. Environ. Chem., 7, 95 (1997) https://doi.org/10.5985/jec.7.95
  9. C. D. Adams, P. A. Scanian, and N. D. Secrist, Environ. Sci. Technol., 28, 1812 (1994) https://doi.org/10.1021/es00060a010
  10. F. J. Beltran, 'Ozone Reaction Kinetics for Water and Wastewater Systems.' Lewis Publishers, Boca Raton, Florida, 2004
  11. M. I. Stefan and J. R. Bolton, Environ. Sci. Technol., 32, 1588 (1998) https://doi.org/10.1021/es970633m
  12. Y. H. Lee and J. Y. Yoon, J. of Environ. Hi-Technol., 7, 92 (2004)
  13. J. E. Hong, H. Pyo and S. J. Park, J. Environ. Toxicol., 8(3), 393 (2003)
  14. K. Scott, 'Handbook of industrial membranes' 2nd Ed., 37, Elsevier Advanced Technology, Oxford, U.K., 1998