Effect of Contact Angles of PDMS and External Voltage on Flow Velocity in Microchannel

PDMS의 접촉각 및 외부전압 변화에 따른 마이크로채널에서 유체의 속도변화

  • Lee, Hyo-Song (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jin-Yong (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Jeong-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2004.08.25
  • Accepted : 2004.11.03
  • Published : 2005.02.28

Abstract

In this study, the effect of contact angles of PDMS and external voltage has been investigated. SU-8 (Microchem, USA) negative photoresist and PDMS are used to make the microchannel. The contact angle of the native PDMS is $105^{\circ}$. The native PDMS is treated with the oxygen plasma and the contact angle changes $19^{\circ}$, $46^{\circ}$ and $69^{\circ}$. As a result, the rate of increase in flow velocity is not directly proportional to the rate of increase of external voltage. This is because the electrical double layer is condensed and the zeta potential is increased with an increase of the external voltage. The flow velocity is highest for the contact angle of $19^{\circ}$ at the same external voltage. Hence we conclude that the thickness of electrical double layer and flow velocities vary with contact angle at the same external voltage.

본 연구에서는 음성 감광제를 이용하여 모형을 제작하고, PDMS(polydimethylsiloxane)로 본을 뜬 후에 유리와 접합시켜 마이크로채널을 제작하였다. 특히 PDMS의 접촉각 변화에 따른 마이크로채널에서 유체의 속도변화를 측정하기 위하여, PDMS의 표면을 플라즈마를 이용하여 처리하였다. 표면처리된 PDMS의 접촉각은 $19^{\circ}$, $46^{\circ}$ 그리고 $69^{\circ}$였으며, 미처리된 PDMS의 접촉각은 $105^{\circ}$였다. 표면처리된 PDMS와 플라즈마 처리를 하지 않은 PDMS에 대하여 외부전압을 변화시켜서 마이크로채널에서의 유체의 속도를 측정하였다. 그 결과 동일한 접촉각을 갖는 PDMS에 대하여 외부전압을 변경시켰을 때, 외부전압이 증가할수록 유체의 속도가 비선형적으로 증가하였다. 이는 외부전압이 증가할수록 계면에서의 전하밀도가 증가하게 되고, 이로 인하여 전기이중층이 압축되어 표면전위가 증가하며, 따라서 제타전위의 값이 증가하기 때문인 것으로 해석된다. 또한, 동일한 외부전압에서 PDMS의 접촉각이 가장 작은 $19^{\circ}$일 때 유체의 속도가 가장 빠르게 나타났다. 이는 유체와 PDMS의 부착 정도에 따라 전기이중층 두께가 달라지고, 이러한 두께변화가 결과적으로 동일한 외부전압에서 접촉각의 크기에 따라 유체의 속도차이를 가져오는 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Madou, M. J., Fundamentals in Microfabrication, CRC press, Boca Raton(1997)
  2. Manz, A. and Becker, H., Microsystem Technology in Chemistry and Life Science, Springer(1998)
  3. Kopp, M. U., Demello, A. J. D. and Manz, A., 'Chemical Amplification: Continuous-Flow PCR on a Chip,' Science, 280, 1046-1048 (1998) https://doi.org/10.1126/science.280.5366.1046
  4. Berdichevsky, Y., Khandurina., J., Guttman, A. and Lo, Y. H., 'UV/ozone Modificatin of Poly(dimethylsiloxane) Microfluidic Channels,' Sensors and Actuators B, 97(4), 402-408(2004) https://doi.org/10.1016/j.snb.2003.09.022
  5. Hillborg, H., Ankner, J. F., Gedde, U. W., Smith, G. D., Yasuda, H. K. and Wikstrom, K., 'Crosslinked Polydimethylsiloxane Exposed to Oxygen Plasma Studied by Neutron Reflectometry and other Surface Specific Techniques,' Polymer, 41(18), 6851-6863(2000) https://doi.org/10.1016/S0032-3861(00)00039-2
  6. Murakami, T., Kuroda, S. and Osawa, Z., 'Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment,' J. Colloid Interface Sci., 202(1), 37-44(1998) https://doi.org/10.1006/jcis.1997.5386
  7. Liu, Y., Fanguy, J. C., Bledsoe, J. M. and Henry, C. S., 'Dynamic Coating using Polyelectrolyte Multilayers for Chemical Control of Electroosmotic Flow in Capillary Electrophoresis Microchips,' Anal. Chem., 72(24), 5939-5944(2000) https://doi.org/10.1021/ac000932l
  8. Ren, X., Bachman, M., Sims, C., Li, G. P. and Allbritton, N., 'Electroosmotic Properties of Microfluidic Channels Composed of Poly(dimethylsiloxane),' J. Chromatography. B, 762(2), 117-125(2001) https://doi.org/10.1016/S0378-4347(01)00327-9
  9. Kozicki, M. N., Maroufkhani, P. and Mitkova, M., 'Flow Regulation in Microchannels via Electrical Alteration of Surface Properties,' Superlattices and Microstructures(in press)
  10. McCormick, R. M., 'Capillary Zone Electrophoretic Separation of Peptides and Proteins using Low pH Buffers in Modified Silica Capillaries,' Anal. Chem., 60(21), 2322-2328(1988) https://doi.org/10.1021/ac00172a003
  11. Hayes, M. A. and Ewing, A. G., 'Electroosmotic Flow Control and Monitoring with an Applied Radial Voltage for Capillary Zone Electrophoresis,' Anal. Chem., 64(5), 512-516(1992) https://doi.org/10.1021/ac00029a012
  12. Belder, D., Elke, K. and Husmann, H., 'Influence of pH-value of Methanolic Electrolytes on Electroosmotic Flow in Hydrophilic Coated Capillaries,' J. Chromatography. A, 868(1), 63-71(2000) https://doi.org/10.1016/S0021-9673(99)01165-6
  13. Polson, N. A. and Hayes, M. A., 'Electroosmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice using an Applied External Voltage,' Anal. Chem., 72(5), 1088-1092(2000) https://doi.org/10.1021/ac9912698
  14. Sinton, D., Canseco, C. E., Ren, L. and Li, D., 'Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels,' J. Colloid Interface Sci., 254(1), 184-189(2002) https://doi.org/10.1006/jcis.2002.8584
  15. Lee, C. S., Mcmanigill, D., Wu, C. T. and Patel, B., 'Factors Affecting Direct Control of Electroosmosis using an External Electric Field in Capillary Electrophoresis,' Anal. Chem., 63(15), 1519-1523(1991) https://doi.org/10.1021/ac00015a005
  16. Lee, C. S., Blanchard, W. C. and Wu, C. T., 'Direct Control of the Electroosmosis in Capillary Zone Electrophoresis by using an External Electric Field,' Anal. Chem., 62(14), 1550-1552(1990) https://doi.org/10.1021/ac00213a043
  17. Inatomi, K. I., Izuo, S. I., Lee, S. S., Ohji, H. and Shiono, S., 'Electrophoresis of DNA in Micro-pillars Fabricated in Polydimethylsiloxane,' Microelectronic Engineering, 70(1), 13-18(2003) https://doi.org/10.1016/S0167-9317(03)00361-7
  18. Chen, J. F., Jin, Q. H., Zhao, J. L. and Xu, Y. S., 'A Signal Process Method for DNA Segments Separation in Microchannel Electrophoresis,' Biosensors and Bioelectronics, 17(7), 619-623(2002) https://doi.org/10.1016/S0956-5663(02)00024-6
  19. Deng, Y., Zhang, H. and Henion, J., 'Chip-Based Quantitative Capillary Electrophoresis Mass Spectrometry Determination of Drugs in Human Plasma,' Anal. Chem., 73(7), 1432-1439(2001) https://doi.org/10.1021/ac0010328
  20. Kutter, J. P., Jacobson, S. C. and Ramsey, J. M., 'Integrated Microchip Device with Electrokinetically Controlled Solvent Mixing for Isocratic and Gradient Elution in Micellar Electrokinetic Chromatography,' Anal. Chem., 69(24), 5165-5171(1997) https://doi.org/10.1021/ac970723+
  21. Oddy, M. H. and Santiago, J. G., 'A Method for Determining Electrophoretic and Electroosmotic Mobilities using AC and DC Electric Field Particle Displacements,' J. Colloid Interface Sci., 269(1), 192-204(2004) https://doi.org/10.1016/S0021-9797(03)00601-5
  22. Probstein, R. F., Physicochemical Hydrodynamics, John Wiley and Sons, Inc.(1994)
  23. Kim, J. D., Interface Phenomenology, Aruka(2000)
  24. Ryu, D. I., Kim, J. H. and Shin, Y. S., Interface Science, Chonnam National Univ.(1998)
  25. Olah, A., Hillborg, H. and Vancso, J., 'Hydrophobic Recovery of UV/ozone Treated Poly(dimethylsiloxane): Adhesion Studies by Contact Mechanics and Mechanism of Surface Modification,' Appl. Surface Science(in press)
  26. Kasemura, T., Takhashi, S., Nakane, N. and Maefawa T., 'Surface Dynamics for Poly(vinyl alkylate)s via Dynamic Contact Angle and Adhesion Tension Relaxation,' Polymer, 37(16), 3659-3664(1996) https://doi.org/10.1016/0032-3861(96)00177-2