PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Jeong, Sunjoo (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • 투고 : 2005.05.23
  • 심사 : 2005.06.07
  • 발행 : 2005.10.31

초록

PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.

키워드

과제정보

연구 과제 주관 기관 : Dankook University

참고문헌

  1. Arlt, A., Vorndamm, J., Breitenroich, M., Folsh, U. R., Kalthoff, H., et al. (2001) Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 20, 859-868 https://doi.org/10.1038/sj.onc.1204168
  2. Arlt, A., Gehrz, A., Muerkoster, S., Vorndamm, J., Kruse, M. L., et al. (2003) Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabineinduced cell death. Oncogene 22, 3243-3251 https://doi.org/10.1038/sj.onc.1206390
  3. Ashburner, B. P., Westerheide, S. D., and Baldwin, A. S. (2001) The p65 (RelA) subunit of NF-kappa B interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21, 7065-7077 https://doi.org/10.1128/MCB.21.20.7065-7077.2001
  4. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S., and Baltimore, D. (1995) Constitutive NF-kappaB activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 9, 2736-2746 https://doi.org/10.1101/gad.9.22.2736
  5. Chang, J. H., Ryang, Y. S., Morio, T., Lee, S. K., and Chang, E. J. (2004) Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-${\kappa}B$ activation, Mol. Cells 18, 177-185
  6. Chen, L. F., Fischle, W., Verdin, E., and Greene, W. C. (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653-1657 https://doi.org/10.1126/science.1062374
  7. Chen, L. F., Mu, Y., and Greene, W. C. (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J. 21, 6539-6548 https://doi.org/10.1093/emboj/cdf660
  8. Choi, Y. S. and Jeong, S. (2004) New paradigm for the NF-${\kappa}B$ transcriptional regulation. J. Nano. Bio. Tech. 1, 21-27
  9. Ghosh, S. (1999) Regulation of inducible gene expression by the transcription factor NF-kappaB. Immunol. Res. 19, 183-189 https://doi.org/10.1007/BF02786486
  10. Ghosh, S., May, M. J., and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260 https://doi.org/10.1146/annurev.immunol.16.1.225
  11. Ibuki, Y. and Goto, R. (2000) Suppression of apoptosis by UVB irradiation: survival signaling via PI3-kinase/Akt pathway. Biochem. Biophys. Res. Commun. 279, 872-878 https://doi.org/10.1006/bbrc.2000.4018
  12. Karin, A., Cao, Y., Greten, F. R., and Li, Z.-W. (2002) NF-${\kappa}B$ in cancer: from innocent bystander to major culprit. Nat. Rev. 2, 301-310 https://doi.org/10.1038/nri807
  13. Kim, D. and Chung, J. (2002) Akt: versatile mediator of cell survival and beyond. J. Biochem. Mol. Biol. 35, 106-115 https://doi.org/10.5483/BMBRep.2002.35.1.106
  14. Lim, M. A., Kikani, C. K., Wick, M. J., and Dong, L. Q. (2003) Nuclear translocation of 3′-phosphoinositide-dependent protein kinase 1 (PDK-1): a potential regulatory mechanism for PDK- 1 function. Proc. Natl. Acad. Sci. USA 100, 14006-14011
  15. Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S., et al. (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol. 20, 1626-1638 https://doi.org/10.1128/MCB.20.5.1626-1638.2000
  16. Madrid, L. V., Mayo, M. W., Reuther, J. Y., and Baldwin, A. S. (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276, 18934-18940 https://doi.org/10.1074/jbc.M101103200
  17. Mayo, M. W., Madrid, L. V., Westerheide, S. D., Jones, D. R., Yuan, X. J., et al. (2002) PTEN blocks tumor necrosis factorinduced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277, 11116-11125 https://doi.org/10.1074/jbc.M108670200
  18. Mayo, M. W., Denliger, C. E., Broad, R. M., Yeung, F., Reilly, E.T., et al. (2003) Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J. Biol. Chem. 278, 18980-18989 https://doi.org/10.1074/jbc.M211695200
  19. Mitchell, T. and Sugden, B. (1995) Stimulation of NF-kappa Bmediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69, 2968-2976
  20. Okazaki, T., Sakon, S., Sasazuki, T., Sakurai, H., Doi, T., et al. (2003) Phosphorylation of serine 276 is essential for p65 NFkappaB subunit-dependent cellular responses. Biochem. Biophys. Res. Commun. 300, 807-812 https://doi.org/10.1016/S0006-291X(02)02932-7
  21. Osaki, M., Oshimura, M., and Ito, H. (2004) PI3K-Akt pathway: its function and alterations in human cancer. Apoptosis 9, 667-676 https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  22. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., et al. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82-85 https://doi.org/10.1038/43466
  23. Reddy, S. A., Huang, J. H., and Liao, W. S. (2000) Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-${\kappa}B$ activation. J. Immunol. 164, 1355-1363
  24. Romashkova, J. and Makarov, S. S. (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401, 86-89 https://doi.org/10.1038/43474
  25. Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T., and Toriumi, W. (1999) $I{\kappa}B$ kinases phosphorylate NF-${\kappa}B$ p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353-30356 https://doi.org/10.1074/jbc.274.43.30353
  26. Scheid, M. P. and Woodgett, J. R. (2003) Unravelling the activation mechanism of protein kinase B/Akt. FEBS Lett. 546, 108-112 https://doi.org/10.1016/S0014-5793(03)00562-3
  27. Schmitz, M., Mattioli, I., Buss, H., and Kracht, M. (2004) NF-B: a multifaceted transcription factor regulated at several levels. ChemBioChem. 5, 1348-1358 https://doi.org/10.1002/cbic.200400144
  28. Shishodia, S. and Aggarwal, B. B. (2004) Nuclear factor-${\kappa}B$: a friend or a foe in cancer? Biochem. Pharmacol. 68, 1071-1080 https://doi.org/10.1016/j.bcp.2004.04.026
  29. Sizemore, N., Leung, S., and Stark, G. R. (1999) Activation of phosphatidylinositol 3-kinase in response to Interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol. Cell. Biol. 19, 4798-4805
  30. Torker, A. (2000) Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol. Pharmacol. 57, 652-658
  31. Toker, A. and Newton, A. (2000) Cellular signaling: pivotaling around PDK-1. Cell 103, 185-188 https://doi.org/10.1016/S0092-8674(00)00110-0
  32. Wang, D., Westerheide, S. D., Hanson, J. L., and Baldwin, A. S. (2000) Tumor Necrosis Factor ${\alpha}$ -induced phosphorylation of RelA/p65 on $Ser^{529}$ is controlled by casein kinase II. J. Biol. Chem. 275, 32592-32597 https://doi.org/10.1074/jbc.M001358200
  33. Watanabe, K., Kubota, M., Hamahata, K., Lin, Y. W., and Usami, I. (2002) Prevention of etoposide-induced apoptosis by proteasome inhibitors in a human leukemic cell line but not in fresh acute leukemia blasts. A differential role of NF-kappaB activation. Biochem. Pharmacol. 60, 823-830
  34. Zhong, H., Voll, R. E., and Ghosh, S. (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661-671 https://doi.org/10.1016/S1097-2765(00)80066-0
  35. Zhong, H., May, M. J., Jimi, E., and Ghosh, S. (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol. Cell 9, 625-636 https://doi.org/10.1016/S1097-2765(02)00477-X