Nondestructive Damage Identification of Free Vibrating Thin Plate Structures Using Micro-Genetic Algorithms

마이크로 유전 알고리즘을 이용한 자유진동 박판구조물의 비파괴 손상 규명

  • 이상열 (스페인 국립그라나다대학교 구조공학과)
  • Received : 2004.12.29
  • Accepted : 2005.03.23
  • Published : 2005.04.27

Abstract

This study deals with a method to identify damages of free vibrating thin plate structures using the combined finite element method (FEM) and the advanced uniform micro-genetic algorithm.To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. The technique described in this paper allows us not only to detect the damaged elements but also to find their numbers, locations, and the extent of damage.To demonstrate the feasibility of the proposed method, the algorithm is applied to a free vibrating steel thin plate structures with arbitrary damages. From the standpoint of computation efficiency, the proposed method in this study has advantages when compared with the existing simple genetic algorithms. The numerical examples demonstrate that the method using micro-genetic algorithms can possibly detect correctly the damages of thin plates from only several natural frequencies instead of their natural modes.

본 연구는 유한요소법과 고도화된 마이크로 유전알고리즘을 조합하여 자유 진동하는 박판 구조물에 대한 손상 규명을 다룬다. 조합된 방법에 의해 역 문제를 해결하기 위하여, 본 연구는 측정 데이터로서 구조물의 모드 형상 대신 몇 개의 고유진동수를 사용한다. 본 연구에서 제안한 방법은 손상된 요소를 탐지할 수 있을 뿐만 아니라 손상의 개수, 위치 그리고 정도를 추정할 수 있다. 제안된 방법의 타당성을 검증하기 위하여 알고리즘은 임의의 손상을 갖는 강으로 된 지유진동 박판 구조물을 대상으로 적용하였다. 기존의 단순 유전알고리즘에 비하여 본 연구에서 제안한 알고리즘은 수치적 효율성에서 큰 장점을 갖는다. 수치해석 예제들은 고유모드 대신 단지 몇 개의 고유진동수 값만으로도 마이크로 유전알고리즘은 박판의 손상을 정확히 규명할 수 있음을 보여준다.

Keywords

References

  1. 이상열(2004) 경계 요소법을 이용한 2차원 비등방성 복합재료 탄성체의 비파괴 결함 추정, 한국전산구조공학회 논문집 제17권 No. 1, pp.72-80
  2. 장석윤, 이상열, 백한솔(2000) 비등방성 복합 적층판의 고유진동 및 모드특성에 대한 수치비교 연구, 대한토목학회 논문집 제20권 3-A, pp.357-366
  3. Au, F. T. K., Cheng, Y. S., Tham, L. G., Bai, ZZ.(2003) Structural damage detection based on a microgenetic algorithm using incomplete and noisy modal test data, J. Sound and Vibration, Vol. 259(5), pp.1081-1094 https://doi.org/10.1006/jsvi.2002.5116
  4. Abu-Lebedh, G., Benekothal, R. F.(1999) Convergence variability and population sizing in micro-genetic algorithms, Comp.-Aided Civil and Infra. Eng., Vol. 14, pp.321-334 https://doi.org/10.1111/0885-9507.00151
  5. Bathe K. J.(1996) Finite element procedures in engineering analysis, Prentice-Hall
  6. Carroll, D. L.(1996) Chemical laser modeling with genetic algorithms, AIAA Vol. 34(2), pp.338-346 https://doi.org/10.2514/3.13069
  7. Carroll, D. L.(1996) Genetic algorithms and optimizing chemical oxygen-iodine lasers developments in theoretical and applied mechanics, School of Engineering, The University of Alabama, 9, pp. 411-424
  8. Chou, J. H., Ghaboussi, J.(2001) Genetic algorithm in structural damage detection, Comput. Struct., Vol. 79, pp.1335-1353 https://doi.org/10.1016/S0045-7949(01)00027-X
  9. Christides, S., Barr, A. D. S.(1984) One-dimensional theory of cracked Bernulli-Euler beams, I. J. Mechanics and Science, Vol. 26(11/12), pp.639- 648
  10. Friswell, M. I., Penny, J. E. T., Garvey, S. D.(1998) A combined genetic and eigensensitivity algorithm for the location of damage in structures, Comput. Sturct., Vol. 69, pp.547-556 https://doi.org/10.1016/S0045-7949(98)00125-4
  11. Goldberg, D. E.(1989) Sizing populations for serial and parallel genetic algorithms, Proc., 3rd Conf. Genetic Algori., Fairfax, VA, 5, pp.29-37
  12. Goldberg, D. E.(1989) Genetic algorithms in search, optimization and machine learning, Addison- Wesley, MA
  13. Gudmudson, P.(1982) The dynamic behaviors of slender structures with cross section cracks, J. Mech. and Phys. Of Solids, Vol. 31(4), pp.329-345
  14. Holland (1975, 1991) Adaptation in natural and artificial systems, Bradford Book, The MIT Press, Cambridge, MA
  15. Krawczuk, M.(2002) Application of spectral beam finite element with a crack and iterative search technique for damage detection, Finite Elements in Analysis and Design, Vol. 38, pp.537-548 https://doi.org/10.1016/S0168-874X(01)00084-1
  16. Krishnakumar, K.(1989) Micro-genetic algorithms for stationary and non-stationary function optimization, SPIE, Vol. 1196, pp.289-296
  17. Lee, S.-Y. and Wooh, S.-C.(2004) Finite Element vibration analysis of composite box structures using high order theory, J. Sound and Vibration, Vol. 277, pp.801-814 https://doi.org/10.1016/j.jsv.2003.09.024
  18. Mares, C., Surace, C.(1996) An application of genetic algorithms to identify damage in elastic structures, J. Sound and Vibration, Vol. 195, pp.195-215 https://doi.org/10.1006/jsvi.1996.0416
  19. Morassi, A., and Rollo, M.(2001), Identification of two cracks in a simply supported beam from minimal frequency measurements, J. Sound and Vibration., Vol. 7, pp.729-739
  20. Ostachowicz, W. M., and Krawczuk, M.(1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam, J. Sound and Vibration., Vol. 150, pp.191-201 https://doi.org/10.1016/0022-460X(91)90615-Q
  21. Rizos, P. F., Aspragathos, N., Dimarogonas, A. D. (1990) Identification of crack location and magnitude in a cantilever beam from the vibration modes, J. Sound and Vibration., Vol. 138, pp. 381-388 https://doi.org/10.1016/0022-460X(90)90593-O
  22. Ruotolo, R., Shifrin, E. I.(1999) Natural frequencies of a beam with arbitrary number of cracks, J. Sound and Vibration., Vol. 222(3), pp.409-423 https://doi.org/10.1006/jsvi.1998.2083
  23. Salawu, O. S. (1997) Detection of structural damage through change in frequency: A review, Engng. Struct., Vol. 19(9), pp.718-723 https://doi.org/10.1016/S0141-0296(96)00149-6
  24. Suh, M. W., Shim, M. B., and Kim, M. Y.(2000) Crack identification using hybrid neuro-genetic technique, J. Sound and Vibration Vol. 238(4), pp.617-635 https://doi.org/10.1006/jsvi.2000.3089
  25. Yang, J. C. S., Tsai, T., Pavlin, V., Chen, J., Tsai, W. H. (1985) Structural damage detection by the system identification technique, Shock and Vibration, Vol. 55, pp.57-68