A Study of Copper Electroless Deposition on Tungsten Substrate

텅스텐 기판 위에 구리 무전해 도금에 대한 연구

  • Kim, Young-Soon (School of Chemical Engineering, Chonbuk National University) ;
  • Shin, Jiho (Korean Minjok Leaders Academy) ;
  • Kim, Hyung-Il (School of Chemical Engineering, Chonbuk National University) ;
  • Cho, Joong-Hee (School of Chemical Engineering, Chonbuk National University) ;
  • Seo, Hyung-Ki (School of Chemical Engineering, Chonbuk National University) ;
  • Kim, Gil-Sung (School of Chemical Engineering, Chonbuk National University) ;
  • Shin, Hyung-Shik (School of Chemical Engineering, Chonbuk National University)
  • Received : 2004.12.27
  • Accepted : 2005.04.15
  • Published : 2005.08.31

Abstract

Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

무전해 도금 용액을 이용하여 구리를 직접 텅스텐(Tungsten, W) 기판 위에 도금하였다. 도금 용액의 농도는 각각 $CuSO_4$ 7.615 g/L, EDTA 10.258 g/L, glyoxylic acid 7 g/L로 하였다. 도금 용액의 pH는 11.0에서 12.8까지 변화시켰으며, 용액의 온도는 $60^{\circ}C$로 유지하였다. 도금된 필름의 특성을 조사하기 위하여 X선 회절분석기, 전계 방출 주사 전자 현미경, 주사형 원자력 현미경, X선 광전자 분석기 및 Rutherford backscattering spectroscope(RBS)를 사용하였다. 구리 도금을 위한 가장 좋은 pH 조건은 11.8이였다. 이 용액에서 10분 동안 도금한 경우 둥근 모양의 구리 입자가 균일하게 도금되었으며, 불순물 peak이 없는 순수 구리 peak이였고, 근평균 제곱 표면 거칠기는 약 11 nm가 되었다. 또한, pH 11.8에서 12분 동안 도금한 필름의 두께는 140 nm이었고 도금속도는 약 12 nm/min였다. 무전해 도금 용액의 pH를 12.8로 증가시키면 도금된 구리 필름은 Cu peak 이외에 불순물 peak인 $Cu_2O$가 나타나고 구리 입자 모양도 기다란 직사각형 모양으로 변하였다. 순수 구리의 도금을 위해서는 도금 용액에서 적당한 pH를 유지하여야 한다. 도금된 구리의 농도는 RBS로 측정한 결과 99 atom%였다. 또한, Cu/W 필름은 전기 도금하는 동안 합금 형태를 이루기 때문에 접착성도 좋았다.

Keywords

Acknowledgement

Supported by : 과학기술부, 한국과학재단

References

  1. International Technology Roadmap for Semiconductors'(2003)
  2. Andricacos, P. C., 'Copper on-chip Interconnections; A Breakthrough in Electrodeposition to Make Better Chips,' The electrochemical Society Interface-spring, 32-37(1999)
  3. Honma, H. and Kobayashi, T., 'Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent,' J. of the Electrochemical Society, 141(3), 730-733(1994) https://doi.org/10.1149/1.2054800
  4. Shacham-Diamand, Y. and Dubin, V. M., 'Copper Electroless Deposition Technology for Ultra-Large-Scale-Integration (ULSI) Metallization,' Microelectronic Engineering, 33, 47-58(1997) https://doi.org/10.1016/S0167-9317(96)00030-5
  5. Shacham-Diamand, Y., 'Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization,' Eletrochemical and Solid-State Letters, 3(6), 279-282(2000)
  6. Wang, Z., Ida, T., Sakaue, H., Shingubara, S. and Takahagi, T., 'Electroless Plating of Copper on Metal-Nitride Diffusion Barriers Initiated by Displacement Plating,' Eletrochemical and Solid- State Letters, 6(3), C38-C41(2003) https://doi.org/10.1149/1.1541255
  7. Kim, J. J. and Kang, M. S., 'Fabrication of Cu Seed Layer on TiN Barrier Using Galvanic Displacement Deposition,' HWAHAK KONGHAK, 39(6), 721-726(2001)
  8. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press(1966)
  9. Angal, M., Shacham-Diamand, Y., Mak, C., Miller, B. and Feldman, L., 'Self-Aligned Interconnects Made by Electroless Deposition of Copper on Tungsten,' Proceedings-Electrochemical Society, 93(25), 204-215(1993)
  10. Kennedy, R. M. and Minten, K., 'Growth Structures of Electroless Copper Films for Printed Wiring Boards,' J. of Vacuum Science and Technology B, 9(2), 735-738(1991) https://doi.org/10.1116/1.585543
  11. Young, C. C., Duh, J. G. and Huang, C. S., 'Improved Characteristics of Electroless Cu Deposition on Pt-Ag Metallized $Al_{2}O_{3}$ Substrates in Microelectronics Packaging,' Surface and Coatings Technology, 145, 215-225(2001) https://doi.org/10.1016/S0257-8972(01)01270-1
  12. Moulder J. F., Stickle W. F., Sobol, P. E. and Bomben, K. D., 'Handbook of X-Ray Photoelectron Spectroscopy,' Physical Electronics, Eden Praire(1992)
  13. Sohn, J. R. and Bae, J. H., 'Characterization of Tungsten Oxide Supported on $TiO_{2}$ and Activity for Acid Catalysis,' Korean J. Chem. Eng., 17(1), 86-92(2000) https://doi.org/10.1007/BF02789259
  14. Lowenheim, F. A., 'Modern Electroplating,' 3rd. ed., John wiley & sons, New York, 734(1974)
  15. Zhang, R., Gao, L. and Jingkun, G., 'Temperature-Sensitivity of Coating Copper on Sub-Micron Silicon Carbide Particles by Electroless Deposition in a Rotation Flask,' Surface and Coatings Technology, 166, 67-71(2003) https://doi.org/10.1016/S0257-8972(02)00748-X
  16. Shu, J., Grandjean, B. P. A. and Kaliaguine, S., 'Effect of $Cu(OH)_{2}$ on Electroless Copper Plating,' Ind. Eng. Chem. Res, 36(5), 1632- 1636(1997) https://doi.org/10.1021/ie9600912
  17. Kim, J. J., Cha, S. H. and Lee, Y. S., 'Seedless Fill-up of the Damascene Structure Only by Copper Electroless Plating,' Japan Journal of Applied Physics, 42, L953-L955(2003) https://doi.org/10.1143/JJAP.42.L953
  18. Baumann, S. A., Strathman, M. D., Steven, L. and Suib, S. L., 'Nondestructive Depth Profiling of Rare-Earth and Actinide Zeolites via Rutherford Backscattering Methods,' Analytical Chemistry, 60, 1046-1051(1998) https://doi.org/10.1021/ac00161a019
  19. Doolittle, L. R., 'Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,' Nuclear Instruments and Methods in Physics Research Section B, 9(3), 344-351(1985) https://doi.org/10.1016/0168-583X(85)90762-1