Acquisition and Processing of Shallow Vector Seismic Data

천부 탄성파 벡터자료 획득 및 분석

  • Hong, Myung-Ho (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki-Young (Department of Geophysics, Kangwon National University) ;
  • Hwang, Yoon-Gu (Department of Geophysics, Kangwon National University)
  • 홍명호 (강원대학교 지구물리학과) ;
  • 김기영 (강원대학교 지구물리학과) ;
  • 황윤구 (강원대학교 지구물리학과)
  • Published : 2005.06.01

Abstract

Acquisition and processing of vector seismic waves were conducted through simultaneous generation of P, SH, and SV waves and receiving those waves using three-component geophones. Test data were received by 24 8-Hz geophones at an interval of 2 m along a 94-m profile. The data were recorded for 512 ms with sampling intervals of 0.2 ms. Raw data indicate that both reflected and refracted P waves are strongly recorded on the vertical component while SH waves are significant on the transverse horizontal component. On the inline horizontal component, both direct P and converted PS waves are recorded. First arrivals of P and SH waves were detected simultaneously on the vertical and transverse horizontal axes, respectively. The recorded vector data were separately inverted using traveltime tomography to yield P- and SH-wave sections. Using those two velocity sections, Poisson's ratios were able to be obtained effectively.

P, SH, SV 파를 동시에 발생시킬 수 있는 타격방법을 고안하여 3성분 지오폰으로 수신함으로써, 발생된 탄성파를 벡터형태로 획득하고 분석하는 연구를 수행하였다. 시험자료로는 94 m의 측선을 따라 2 m 간격으로 설치한 수신점에서 0.5 ms 간격으로 512 ms 동안 기록한 24채널 자료를 사용하였다. 획득한 시험자료의 수직성분에는 굴절 및 반사된 P파가 뚜렷하게 기록되어 있으며, 측선에 수직한 수평성분에는 SH파, 측선에 평행한 수평성분에는 직접 P파와 PS 변환파가 비교적 강하게 기록되었다. 동시에 획득한 수직 및 측선에 수직한 수평성분에 각각 기록된 P파 및 SH파 초동을 굴절파 토모그래피 방식으로 역산한 결과, P파 및 S파 속도 토모그램을 얻을 수 있었으며, 이 두 속도단면으로부터 동포아송비 값을 효과적으로 구할 수 있었다.

Keywords

References

  1. 김기영, 김동훈, 신현조, 김연중, 2002, 굴절파 주시 토모그래피를 이용한 일산시 약수지역의 울산단층 지질구조 연구, 지질학회지, 38권 제 4호, 509-518
  2. Ameely, L., Edelman, A.H.K., and Fertig, J., 1985, How do shear wave affect normal P-wave Records?, Geophys. Prosp., 33, 201-211 https://doi.org/10.1111/j.1365-2478.1985.tb00429.x
  3. Dohr, G. Ed., Seismic Shear Waves, Handbook of Geophysical Exploration, 15a, 1-86
  4. Dueker, K., Humphreys, E., & Biasi, G., 1993, Teleseismic imaging of the western United States upper mantle structure using the simultaneous iterative reconstruction technique, in Seismic tomography: theory and practice, Chapman & Hall, London
  5. Garotta, R., 1978, Land seismic shear waves, CGG Technical Series No. 507.78.05
  6. Layotte, P.C., 1986, Marthor: An S-wave impulse source. In: Danbom, S.H. and Domenico, S.N.(eds.), Shear-wave Exploration, Society of Exploration Geophysicists, Tulsa, 79-96
  7. Miller, S.L.M. and Stewart, R.R., 1990, Effects of lithology, porosity and shaliness on P- and S-wave velocities from sonic logs, Canadian Journal of Exploration Geophysics, 26, 94-103
  8. Nations, J.F., 1974, Lithology and porosity from acoustic shear and compressional wave transit time relationships, Transactions of the Society of Professional Well Log Analysts Annual Logging Symposium, 15, 1-16
  9. Qin, F., Olsen, K. B., Cai, W., and Schuster, G. T., 1992, Finite-difference solution of the eikonal equation along expanding wavefronts, Geophysics, 57, 478-487 https://doi.org/10.1190/1.1443263
  10. Saito, H., 2001, Seismic traveltime tomography for shallow subsurface explorations. Ph. D. Thesis, Hokkaido University
  11. Tatham, R.H. and McCoemack, M.D., 1991, Multicom- ponent Seismology in Petroleum Exploration, Society of Exploration Geophysicists, USA
  12. Vidale, J., 1988, Finite-difference calculation of travel times, AAPG Bull., 78, 2062-2076