DOI QR코드

DOI QR Code

Proteomic Analysis and Extensive Protein Identification from Dry, Germinating Arabidopsis Seeds and Young Seedlings

  • Fu, Qiang (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Wang, Bai-Chen (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Jin, Xiang (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Li, Hong-Bing (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Han, Pei (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Wei, Kai-Hua (Institute of Basic Medical Sciences, National Center of Biomedical Analysis) ;
  • Zhang, Xue-Min (Institute of Basic Medical Sciences, National Center of Biomedical Analysis) ;
  • Zhu, Yu-Xian (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University)
  • Published : 2005.11.30

Abstract

Proteins accumulated in dry, stratified Arabidopsis seeds or young seedlings, totaled 1100 to 1300 depending on the time of sampling, were analyzed by using immobilized pH gradient 2-DE gel electrophoresis. The molecular identities of 437 polypeptides, encoded by 355 independent genes, were determined by MALDI-TOF or TOF-TOF mass spectrometry. In the sum, 293 were present at all stages and 95 were accumulated during the time of radicle protrusion while another 18 appeared in later stages. Further analysis showed that 226 of the identified polypeptides could be located in different metabolic pathways. Proteins involved in carbohydrate, energy and amino acid metabolism constituted to about 1/4, and those involved in metabolism of vitamins and cofactors constituted for about 3% of the total signal intensity in gels prepared from 72 h seedlings. Enzymes related to genetic information processing increased very quickly during early imbibition and reached highest level around 30 h of germination.

Keywords

References

  1. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
  2. Bewley, J. D. (1997) Seed germination and dormancy. Plant Cell 9, 1055-1066 https://doi.org/10.1105/tpc.9.7.1055
  3. Bove, J., Jullien, M. and Grappin, P. (2001) Functional genomics in the study of seed germination. Genome Biol. 3, 1002.1- 1002.5
  4. Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2001) Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol. 126, 835-848 https://doi.org/10.1104/pp.126.2.835
  5. Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. (2002) Proteomics of Arabidopsis seed germination. a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 129, 823-837 https://doi.org/10.1104/pp.002816
  6. Gamble, S. C., Dunn, M. J., Wheeler, C. H., Joiner, M. C., Adu- Poku, A. and Arrand, J. E. (2000) Expression of proteins coincident with inducible radioprotection in human lung epithelial cells. Cancer. Res. 60, 2146-2151
  7. Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124, 1570-1581 https://doi.org/10.1104/pp.124.4.1570
  8. Gorg, A., Postel, W. and Gunther, S. (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 9, 531-546 https://doi.org/10.1002/elps.1150090913
  9. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, 277-280 https://doi.org/10.1093/nar/gkh063
  10. Koornneef, M., Bentsink, L. and Hilhorst, H. (2002) Seed dormancy and germination. Current Opin. Plant Biol. 5, 33-36 https://doi.org/10.1016/S1369-5266(01)00219-9
  11. Koornneef, M. and Karssen, C. M. (1994) Seed dormancy and germination; in Arabidopsis, Meyerowitz, E. M. and Somerville, C. R. (eds.), pp. 313-334, Cold Spring Harbor Laboratory Press, New York, USA
  12. Kim, T-G., Kraus, J. C., Chen, J. and Lee, Y. (2003) JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247-42255 https://doi.org/10.1074/jbc.M307386200
  13. Lebreton, S., Graciet, E. and Gontero, B. (2003) Modulation, via protein-protein interactions, of glyceraldehyde-3-phosphate dehydrogenase activity through redox phosphoribulokinase regulation. J. Biol. Chem. 278, 12078-12084 https://doi.org/10.1074/jbc.M213096200
  14. Im, Y. J., Kim, J. I., Shen, Y., Na, Y., Han, Y. J., Kim, S. H., Song, P. S. and Eom, S. H. (2004) Structural analysis of arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling. J. Mol. Biol. 343, 659- 670 https://doi.org/10.1016/j.jmb.2004.08.054
  15. Ng, S. K., Zhang, Z., Tan, S. H. and Lin, K. (2003) InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucleic Acids Res. 31, 251-254 https://doi.org/10.1093/nar/gkg079
  16. Noh, B., Lee, S. H., Kim, H. J., Yi, G., Shin, E. A., Lee, M., Jung, K. J., Doyle, M. R., Amasino, R. M. and Noh, Y. S. (2004) Divergent roles of a pair of homologous jumonji/zincfinger– class transcription factor proteins in the regulation of arabidopsis flowering time. Plant Cell 16, 2601-2613 https://doi.org/10.1105/tpc.104.025353
  17. Novikova, G. V., Moshkov, I. E., Smith, A. R. and Hall, M. A. (2003) Nucleoside diphosphate kinase is a possible component of the ethylene signal transduction pathway. Biochemistry(Moscow) 68, 1342-1348 https://doi.org/10.1023/B:BIRY.0000011656.90378.e4
  18. Rajjou, L., Gallardo, K., Debeaujon, I., Vandekerckhove, J., Job, C. and Job, D. (2004) The effect of ${\alpha}$-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mrnas during germination. Plant Physiol. 134, 1598-1613 https://doi.org/10.1104/pp.103.036293
  19. Rhee, S. Y., Beavis, W., Berardini, T. Z., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, G., Montoya, M., Miller, N., Mueller, L. A., Mundodi, S., Reiser, L., Tacklind, J., Weems, D. C., Wu, Y., Xu, I., Yoo, D., Yoon, J. and Zhang, P. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31, 224-228 https://doi.org/10.1093/nar/gkg076
  20. Schofield, C. J. and Ratcliffe, P. J. (2004) Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343-354 https://doi.org/10.1038/nrm1366
  21. Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  22. The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25, 25-29 https://doi.org/10.1038/75556
  23. Tyler, L., Thomas, S. G., Hu, J., Dill, A., Alonso, J. M., Ecker, J. R. and Sun, T. P. (2004) DELLA proteins and gibberellinregulated seed germination and floral development in arabidopsis. Plant Physiol. 135, 1008-1019 https://doi.org/10.1104/pp.104.039578
  24. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y. and Yamaguchi, S. (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378 https://doi.org/10.1105/tpc.018143
  25. Yan, S., Tang, Z., Su, W. and Sun, W. (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5, 235-244 https://doi.org/10.1002/pmic.200400853

Cited by

  1. Identification of proteins expressed at extremely low level in Arabidopsis leaves vol.358, pp.3, 2007, https://doi.org/10.1016/j.bbrc.2007.04.189
  2. Using proteomics to study sexual reproduction in angiosperms vol.24, pp.1, 2011, https://doi.org/10.1007/s00497-010-0149-5
  3. Proteomic Profiling of the Aleurone Layer of Mature Arabidopsis thaliana Seed vol.31, pp.2, 2013, https://doi.org/10.1007/s11105-012-0498-3
  4. Plant hormones and seed germination vol.99, 2014, https://doi.org/10.1016/j.envexpbot.2013.11.005
  5. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus vol.7, 2016, https://doi.org/10.3389/fpls.2016.01482
  6. N-Terminal Acetylation of Two Major Latex Proteins from Arabidopsis thaliana Using Electrospray Ionization Tandem Mass Spectrometry vol.26, pp.2, 2008, https://doi.org/10.1007/s11105-008-0027-6
  7. Seed proteomics vol.74, pp.4, 2011, https://doi.org/10.1016/j.jprot.2010.12.004
  8. Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy vol.6, pp.1, 2013, https://doi.org/10.1186/1939-8433-6-17
  9. Studies on the molecular mechanisms of seed germination vol.15, pp.10, 2015, https://doi.org/10.1002/pmic.201400375
  10. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming vol.10, pp.9, 2011, https://doi.org/10.1021/pr101274f
  11. Mitochondrial Proteome Studies in Seeds during Germination vol.4, pp.2, 2016, https://doi.org/10.3390/proteomes4020019
  12. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines vol.8, pp.22, 2008, https://doi.org/10.1002/pmic.200701164
  13. Identification and characterization of protein composition in Withania somnifera—an Indian ginseng vol.21, pp.1, 2012, https://doi.org/10.1007/s13562-011-0083-0
  14. Cold Stratification and Exogenous Nitrates Entail Similar Functional Proteome Adjustments duringArabidopsisSeed Dormancy Release vol.11, pp.11, 2012, https://doi.org/10.1021/pr3006815
  15. Differential proteome analysis of mature and germinated seeds of Magnolia sieboldii K. Koch vol.28, pp.3, 2014, https://doi.org/10.1007/s00468-014-0998-x
  16. Seed Dormancy and Germination vol.6, 2008, https://doi.org/10.1199/tab.0119
  17. Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column vol.37, pp.2, 2010, https://doi.org/10.1007/s11033-009-9478-6
  18. cDNA-AFLP profiling in the embryo axes during common bean germination vol.55, pp.3, 2011, https://doi.org/10.1007/s10535-011-0108-5
  19. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana vol.572, pp.2, 2015, https://doi.org/10.1016/j.gene.2015.07.062