GENE-EXPRESSION PROFILING OF TITANIUM-CELL INTERACTION

  • Kim, Chang-Su (Department of Prosthodontics, Seoul National University Bundang Hospital) ;
  • Hwang, Jung-Won (Department of Prosthodontics, Seoul National University Bundang Hospital) ;
  • Ryu, Jae-Jun (Department of Prosthodontics, Korea University Medical center) ;
  • Shin, Sang-Wan (Department of Prosthodontics, Korea University Medical center) ;
  • Sohn, Sung-Hwa (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University) ;
  • Kim, Ki-Nam (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University) ;
  • Kim, Meyoung-Kon (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
  • 발행 : 2005.06.01

초록

Statement of problem. In the process of bone formation, titanium (Ti) surface roughness is an important factor modulating osteoblastic function. Purpose. This study was carried out to determine the effect of different Ti surface on biologic responses of a human osteoblast-like cell line (MG63). Materials and methods. MG63 cells were cultured on S (smooth), SLA (sandblasted largegrit & acid etching), HA (hydroxyapatite) Ti. The morphology and attachment of the cells were examined by SEM. The cDNAs prepared from total RNAs of MG63 were hybridized to a human cDNA microarray (1,152 elements). Results. The appearances of the surfaces observed with SEM were different in the three types of dental substrates. The surface of SLA and HA were shown to be rougher than S. MG63 cells cultured on SLA and HA were cell-matrix interaction. In the expression of genes involved in osseointegration, upregulated genes were bone morphogenetic protein, Villin, Integrin, Insulin-like growth factors in different surfaces. Downregulated genes were fibroblast growth factor receptor 4, Bcl 2-related protein, collagen, CD4 in different surfaces. Conclusion. The attachment and expression of key osteogenic regulatory genes were enhanced by surface roughness of the dental materials.

키워드

참고문헌

  1. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, et al. Interface shear strength of titanium implants with a sandblasted and acidetched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 1999;45:75-83 https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P
  2. Cordioli G, Majzoub Z, Piattelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 2000;15:668-74
  3. Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clinical Implant Dentistry and Related Research 2000;2:120-9 https://doi.org/10.1111/j.1708-8208.2000.tb00002.x
  4. Lohmann CH, Sagun R, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z. Surface roughness modulates the response of MG 63 osteoblastlike cells to 1,25-(OH)(2)D(3) through regulation of phospholipase A (2) activity and activation of protein kinase A. Journal of Biomedical Materials Research 1999;37:139-51
  5. London RM, Roberts FA, Baker DA, Rohrer MD, O'Neal RB. Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. Int J Oral Maxillofac Implants 2002;17:369-376
  6. Carinci F, Volinia S, Pezzetti F, Francioso F, Tosi L, Piattelli A. Titanium-cell interaction: analysis of gene expression profiling. J Biomedical Mater Res 2003b;66B:341-6 https://doi.org/10.1002/jbm.b.10021
  7. Shah AK, Sinha RK, Hickok NJ, Tuan RS. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone 1999;24:499-506 https://doi.org/10.1016/S8756-3282(99)00077-0
  8. Ogawa T, Sukotjo C, Nishimura I. Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J Prosthodontics 2002;11:241-7 https://doi.org/10.1053/jopr.2002.129772
  9. Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C. Implant surface roughness affects osteoblast gene expression. J Dent Research 2003;82:372-6 https://doi.org/10.1177/154405910308200509
  10. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomedical Mater Res 2004;70A:361-9 https://doi.org/10.1002/jbm.a.30025
  11. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 2004a;25:21528
  12. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 2000;15:779-84
  13. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Marchesini J, Caramelli E, Piattelli A. Analysis of MG63 osteoblastic-cell response to a new nanoporous implant surface by means of a microarray technology. Clin Oral Implants Res 2004b;15:180-6 https://doi.org/10.1111/j.1600-0501.2004.00997.x
  14. Carinci F, Pezzetti F, Volinia 5, Francioso F, Arcelli D, Marchesini J, Scapoli L, Piattelli A. Analysis of osteoblast-like MG63 cells response to a rough implant surface by means of DNA microarray. J Oral Implantoogyl 2003a;29:215-20 https://doi.org/10.1563/1548-1336(2003)029<0215:AOOMCR>2.3.CO;2
  15. Carinci F, Piattelli A, Stabellini G, Palmieri A, Scapoli L, Laino G, Caputi S, Pezzetti F. Calcium sulfate: analysis of MG63 osteoblast-like cell response by means of a microarray technology. J Biomedical Mater Res 2004c; 71B:260-7 https://doi.org/10.1002/jbm.b.30133
  16. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515-25 https://doi.org/10.1034/j.1600-0501.2001.120513.x
  17. Ogawa T, Nishimura I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants 2003;18:200-10
  18. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood WH, 3rd, Donovan DM, Webster M, Freed WJ, Becker KG. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Research Bulletin 2001;55:641-50 https://doi.org/10.1016/S0361-9230(01)00522-6
  19. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996;14:457-60 https://doi.org/10.1038/ng1296-457
  20. Park GH, Choe J, Choo HJ, Park YG, Sohn J, Kim MK. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Experimental & Molecular Medicine 2002;34:184-93 https://doi.org/10.1038/emm.2002.27
  21. Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, 3rd, Becker KG, Ko MS. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proceeding of the National Academy of Science of the United States of America 2000;97:9127-9132 https://doi.org/10.1073/pnas.97.16.9127
  22. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proceeding of the National Academy of Science of the United States of America 1998;95:14863-8 https://doi.org/10.1073/pnas.95.25.14863
  23. Yu Y, Harris RI, Yang JL, Anderson HC, Walsh WR. Differential expression of osteogenic factors associated with osteoinductivity of human osteosarcoma cell lines. J Biomedical Mater 2004;70A:122-8 https://doi.org/10.1002/jbm.a.30072
  24. Aubin J, Davy A, Soriano P. Invivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes & Development 2004;18:1482-94 https://doi.org/10.1101/gad.1202604
  25. Liu Y, Hunziker EB, Layrolle P, De Bruijn JD, De Groot K. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Engineering 2004;10:101-8 https://doi.org/10.1089/107632704322791745
  26. Sasaguri K, Ganss B, Sodek J, Chen JK. Expression of bone sialoprotein in mineralized tissues of tooth and bone and in buccal-pouch carcinomas of Syrian golden hamsters. Archieve Oral Biology 2000;45:551-62 https://doi.org/10.1016/S0003-9969(00)00022-4
  27. Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Iizuka T. Expression of bone morphogenetic protein in the course of osteoinduction by recombinant human bone morphogenetic protein-2. Clinical Oral Implants Research 2002;13:80-5 https://doi.org/10.1034/j.1600-0501.2002.130110.x
  28. Ohara N, Hayashi Y, Yamada S, Kim SK, Matsunaga T, Yanagiguchi K, Ikeda T. Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 2004;25:1749-54 https://doi.org/10.1016/j.biomaterials.2003.08.022
  29. de Jong DS, Steegenga WT, Hendriks JM, van Zoelen EJ, Olijve W, Dechering KJ. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochemical and Biophysical Research Communications 2004;320:100-7 https://doi.org/10.1016/j.bbrc.2004.05.150
  30. Reddi AH. Bone morphogenetic proteins: and unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Review 1997;8:11-20 https://doi.org/10.1016/S1359-6101(96)00049-4
  31. Bessho K, Carnes DL, Cavin R, Chen HY, Ong JL. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin Oral Implants Res 1999;10:212-8 https://doi.org/10.1034/j.1600-0501.1999.100304.x
  32. Suzuki A, Nishimatxu S, Murakami K, Ueno N. Differential expression of Xenopus BMPs in early embryos and tissues. Zoological Science, 1993;10:175-8
  33. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM. Purification and characterization of other distinct bone-in-ducing factors. Proceeding of the National Academy of Science of the United States of America 1988;85:9484-9488 https://doi.org/10.1073/pnas.85.24.9484
  34. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528-34 https://doi.org/10.1126/science.3201241
  35. Jones CM, Lyons KM, Hogan BL. Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 1991;111:531-42
  36. Onishi T, Ishidou Y, Nagamine T, Yone K, Imamura T, Kato M, Sampath TK, ten Dijke P, Sakou T. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture heling in rats. Bone 1998;22:605-12 https://doi.org/10.1016/S8756-3282(98)00056-8
  37. Gabbitas B, Pash J, Canalis E. Regulation of insulinlike growth factor-II synthesis in bone cell cultures by skeletal growth factors. Endocrinology 19094;135:284-9 https://doi.org/10.1210/en.135.1.284
  38. Schmid C, Rutishauser J, Schlapfer I, Froesch ER, Zapf J. Intact but not truncated insulin-like growth factor binding protein-3 (IGFBP-3) blocks IGF I-induced stimulation of osteoblasts: control of IGF signalling to bone cells by IGFBP-3-specific proteolysis? Biochemical and Biophysical Research Communications 1991;179:579-85 https://doi.org/10.1016/0006-291X(91)91410-E
  39. Knutsen R, Honda Y, Strong DD, Sampath TK, Baylink DJ, Mohan S. Regulation of insulin-like growth factor system components by osteogenic protein-1 in human bone cells. Endocrinology 1995;136:857-65 https://doi.org/10.1210/en.136.3.857
  40. Canalis E, Gabbitas B. Bone morphogenetic protein 2 increases insulin-like growth factor I and II transcripts and polypeptide levels in bone cell cultures. J Bone & Mineral Res 1994;9:1999-2005
  41. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Development 1994; 8:133-46 https://doi.org/10.1101/gad.8.2.133
  42. Schmid C. Insulin-like growth factors. Cell Biology Int 1995;19:445-57 https://doi.org/10.1006/cbir.1995.1088
  43. Kovacina KS, Steele-Perkins G, Roth RA. A role for the insulin-like growth factor II/mannose-6-phosphate receptor in the insulin-induced inhibition of protein catabolism. Molecular Endocrinology 1989;3:901-6 https://doi.org/10.1210/mend-3-6-901
  44. Ku CH, Browne M, Gregson PI, Corbeil J, Pioletti DP. Large-scale gene expression analysis of osteoblasts cultured on three different Ti-6AI-4V surface treatments. Biomaterials 2002;23:4193-202 https://doi.org/10.1016/S0142-9612(02)00161-8
  45. Pioletti DP, Leoni L, Genini D, Takei H, Du P, Corbeil J. Gene expression analysis of osteoblastic cells contacted by orthopedic implant particles. J Biomedical Mater Res 2002;61:408-20 https://doi.org/10.1002/jbm.10218
  46. Nemeth JA, Cher ML, Zhou Z, Mullins C, Bhagat S, Trikha M. Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin Experiment Metastasis 2003;20:413-20 https://doi.org/10.1023/A:1025461507027
  47. Zhou X, Murphy FR, Gehdu N, Zhang J, Iredale JP, Benyon RC. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. Journal of Biology & Chemistry 2004;279:23996-4006. Epub 2004 Mar 24 https://doi.org/10.1074/jbc.M311668200
  48. Kim MO, Yun SJ, Kim IS, Sohn S, Lee EH. Transforming growth factor-beta-inducible gene-h3 (beta(ig)-h3) promotes cell adhesion of human astrocytoma cells in vitro: implication of alpha6-beta4 integrin. Neuroscience Letter 2003;336: 93-6 https://doi.org/10.1016/S0304-3940(02)01260-0
  49. Kippenberger S, Loitsch S, Muller J, Guschel M, Kaufmann R, Bernd A. Ligation of the beta4 integrin triggers adhesion behavior of human keratinocytes by an 'inside-out' mechanism. J Investigative Dermatology 2004;123:444-51 https://doi.org/10.1111/j.0022-202X.2004.23323.x