Evaluation of Leaching Stability of Preservative Treated Wood in the Seawater for the use of a Fish-breeding Ground

해양어초사용을 위한 방부목재의 해수 용탈성 평가

  • Received : 2005.03.07
  • Accepted : 2005.04.29
  • Published : 2005.05.25

Abstract

This study attempted to obtain the basic data of utilizable possibility of preservative treated wood as a material used in a marine ranch. To evaluate the leaching stability of CCA-, CCFZ-, and ACQ-treated woods in seawater, the specimens treated with 2% and 3% (w/v) of CCA, CCFZ, and ACQ were exposed to deionized water, synthetic seawater and natural seawater for 41 days and then each component released was periodically determined. There was little amount of copper and chromium released from CCA-treated wood exposed in both deionized and seawater. Although relatively large amount of arsenic was released from CCA-treated wood, the release rate in seawater was lower than that in deionized water. The release rate of chromium and zinc from CCFZ-treated wood were somewhat greater in deionized water, but lower in seawater than in deionized water. Retention level and salinity of synthetic seawater had little effect on the release rate of components. The ACQ-treated wood had greater copper release than CCA- and CCFZ-treated wood, and the amount of copper released did not affected by leaching media used.

본 연구는 바다목장사업 소재로서 방부처리 목재의 사용 가능성에 대한 기초자료를 얻고자 실시하였다. CCA, CCFZ, ACQ 처리재 내 포함된 유해 중금속의 해수에 대한 용탈 안전성을 평가하기 위해 각각 2% 및 3% 방부제 수용액으로 처리한 목재를 증류수, 자연해수 및 인공적으로 염도를 조절한 인공해수에 41일간 폭로하여 기간 별 각 성분의 용탈량을 측정하였다. 바닷물에서 CCA 처리재의 구리 및 크롬의 용탈은 거의 일어나지 않았으며, 다소 많은 비소의 용탈이 있었으나 증류수에서의 용탈에 비해 적은 양을 나타내었다. CCFZ는 증류수에서 크롬과 아연의 용탈량이 매우 높았으나 바닷물에서는 훨씬 적은 용탈량을 나타내었다. 방부제 흡수량 및 인공해수의 염분 농도에 따른 용탈량에는 큰 차이가 없었다. ACQ 처리재는 CCA 및 CCFZ 처리재에 비해 많은 구리 용탈을 나타내었으며 용탈 매체에 따른 차이는 나타나지 않았다.

Keywords

References

  1. Balwin, W. J., E. A. Pasek., and P. D. Osborne. 1994. Sediment toxicity of CCA-C treated marine piles. AWPA Proceeding 90: 300-316
  2. Bodek, I., W. J. Lyman, W. F. Reehl, and R. H. Rosenblatt. 1988. Environmental Inorganic Chemistry. Permagon Press. New York, NY
  3. Johnson, B. R. and D. I. Gutzmer. 1981. Marine Exposure of Preservative-Treated Small Wood Panels. FPL Research Paper-399, Madison. WI. USDA, Forest Service, Forest Products Lab
  4. Cooper, P. A. 1991. Cation exchange adsorption of copper on wood. Wood Protection 1(1): 9-14
  5. Dahlgren, S. E. 1972. The course of fixation of Cu-Cr-As wood preservatives. Record Annual Convention British Wood Preservers' Association: 109-128
  6. Gjovik, L. R. 1977. Pretreatment molding of southern pine: Its effect on the permanence and performance of preservatives exposed in sea water. In: Proc. Am. Wood-Preservers' Asoc. 73: 142-153
  7. Weis, J. S. and P. Weis. 1992. Transfer of contaminants from CCA-treated lumber to aquatic biota. J. Exp. Mar. Biol. Ecol. 161: 189-199 https://doi.org/10.1016/0022-0981(92)90096-S
  8. Lebow, S. 1996. Leaching of wood preservative components and their mobility in the environment- Summary of pertinent literature. General Technical Report. FPL-GTR-93. Madison. WI. USDA, Forest Service, Forest Products Lab
  9. Lebow, S., D. Foster, and P. Lebow. 1999. Release of copper, chromium, and arsenic from treated southern pine exposed in seawater and freshwater. Forest Products Journal 49(7/8): 80-89
  10. Shelver, G. D., D. D. McQuaid, and A. A. W. Baecker. 1991. Leaching of CCA from Pinus patula during marine trials in the southern hemisphere. The International Res. Group on Wood Preservation. Document No. IRG/WP/416
  11. 국립산림과학원(KFRI). 2004. 국립산림과학원고시 제 2004-06 호
  12. 충남대학교 무기소재 화학연구소 2000. 극미량 원소분석 워크샵
  13. 산림청. 2004. 산림청고시 제 2004-62호 목재의 방부. 방충처리기준
  14. 해양수산부. 2004. 수산업동향에 대한 연차보고서
  15. 국립수산진흥원. 2001. 한국해양편람(제 4판)