References
- Allende, J. L., Gibello, A., Fortun, A., Mengs, G., Ferrer, E. and Martin, M. (2000) 4-Hydroxybenzoate uptake in an isolated soil Acinetobacter sp. Curr. Microbiol. 40, 34-39 https://doi.org/10.1007/s002849910007
-
Allende, J. L., Gibello, A., Fortun, A., Sanchez, M. and Martin, M. (2002) 4-Hydroxybenzoate uptake in Klebsiella planticola strain DSZ1 is driven by
${\Delta}pH$ . Curr. Microbiol. 44, 31-37 https://doi.org/10.1007/s00284-001-0070-0 - Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378
- Crawford, N. M. and Glass, A. D. M. (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389-395 https://doi.org/10.1016/S1360-1385(98)01311-9
-
Ekiel, I., Jarrel, K. F. and Sprot, G. D. (1985) Amino acid biosynthesis and sodium-dependent transport in Methanococcus voltae, as revealed by
$^13$ C-NMR. Eur. J. Biochem. 149, 437-444 https://doi.org/10.1111/j.1432-1033.1985.tb08944.x -
Espie, G. S. and Kandasamy, R. A. (1994) Monensin inhibition of
$Na^+$ -dependent$HCO_3$ - transport distinguishes it from$Na^+$ -independent transport and provides evidence for$Na^+$ -/$HCO_3$ - symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol. 104, 1419-1428 - Flores, E. and Herrero, A. (1994) Assimilatory nitrogen metabolism and its regulation; in The Molecular Biology of Cyanobacteria, Bryant, D. A. (ed.), pp. 487-517, Kluwer Academic Publishers, Dordrecht, the Netherland
- Garcia-Sanchez, M. J., Jaime, M. P., Ramos, A., Sanders, D. and Fernandez, J. A. (2000) Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol. 122, 879-885 https://doi.org/10.1104/pp.122.3.879
- Incharoensakdi, A. and Waditee, R. (2000) Degradation of glycine betaine by betaine-homocysteine methyltransferase in Aphanothece halophytica: effect of salt downshock and starvation. Curr. Microbiol. 41, 227-231 https://doi.org/10.1007/s002840010125
- Incharoensakdi, A. and Wangsupa, J. (2003) Nitrate uptake by the halotolerant cyanobacterium Aphanothece halophytica grown under non-stress and salt-stress conditions. Curr. Microbiol. 47, 255-259 https://doi.org/10.1007/s00284-002-4000-6
- Incharoensakdi, A. and Wutipraditkul, N. (1999) Accumulation of glycine betaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica. J. Appl. Phycol. 11, 515-523 https://doi.org/10.1023/A:1008186309006
- Joshi, A. K., Ahmed, S. and Ferro-Luzzi, G. (1989) Energy coupling in bacterial periplasmic transport systems. J. Biol. Chem. 264, 2126-2133
- Kroll, R. G. and Booth, I. R. (1981) The role of potassium transport in the generation of a pH gradient in Escherichia coli. Biochem. J. 198, 691-698
-
Krulwich, T. A. and Guffanti, A. A. (1989) The Na+cycle of extreme alkalophiles: a secondary
$Na^+$ /$H^+$ antiporter and$Na^+$ /solute symporters. J. Bioenerg. Biomembr. 21, 663-677 https://doi.org/10.1007/BF00762685 - Lara, C., Romero, J. M. and Guerrero, M. G. (1987) Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J. Bacteriol. 169, 4376-4378.
- Mackinney, G. (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 314-322
-
Meharg, A. A. and Blatt, M. R. (1995)
$NO_3$ - transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J. Membr. Biol. 145, 49-66 https://doi.org/10.1007/BF00233306 - Miller, A. J. and Smith, S. J. (1996) Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47, 843-854 https://doi.org/10.1093/jxb/47.7.843
-
Mochizuki-Oda, N. and Oosawa, F. (1985) Amiloride-sensitive
$Na^+$ -$H^+$ antiporter in Escherichia coli. J. Bacteriol. 163, 395-397 - Molenaar, D., Hagting, A., Alkema, H., Driessen, A. J. M. and Konings, W. N. (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J. Bacteriol. 175, 5438-5444
- Omata, T. (1995) Structure, function and regulation of the nitrate transport system of the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol. 36, 207-213
-
Padan, E. and Schuldiner, S. (1996) Bacterial
$Na^+$ /$H^+$ antiporters: molecular biology, biochemistry, and physiology; in Handbook of Biological Physics, Konings, W. N., Kaback, H. R. and Lolkema, J. S. (eds.), pp. 501-531, Elsevier Science, Amsterdam, the Netherlands - Padan, E. and Schuldiner, S. (1978) Energy transduction in the photosynthetic membranes of the cyanobacterium Plectonema boryanum. J. Biol. Chem. 253, 3281-3286
- Pressman, B. C. (1976) Biological application of ionophores. Annu. Rev. Biochem. 45, 501-530 https://doi.org/10.1146/annurev.bi.45.070176.002441
- Proctor, L. M., Lai, R. and Gunsalus, R. P. (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high affinity glycine betaine transporter involved in osmotic adaptation. Appl. Environ. Microbiol. 63, 2252-2257
- Reed, P. W. (1979) Ionophores. Meth, Enzymol. 55, 435-454. https://doi.org/10.1016/0076-6879(79)55058-7
- Rodriguez, R., Guerrero, M. G. and Lara, C. (1994) Mechanism of sodium/ nitrate symport in Anacystis nidulans R2. Biochim. Biophys. Acta. 1187, 250-254 https://doi.org/10.1016/0005-2728(94)90121-X
- Rodriguez, R., Lara, C. and Guerrero, M. G. (1992) Nitrate transport in the cyanobacterium Anacystis nidulans R2: kinetic and energetic aspects. Biochem. J. 282, 639-643
-
Takabe, T., Incharoensakdi, A., Arakawa, K. and Yokota, S. (1988)
$CO_2$ fixation and RuBisCO content increase in a highly halotolerant cyanobacterium Aphanothece halophytica, grown in high salinity. Plant Physiol. 88, 1120-1124 https://doi.org/10.1104/pp.88.4.1120 -
Waditee, R., Hibino, T., Nakamura, T., Incharoensakdi, A. and Takabe, T. (2002) Overexpression of
$Na^+$ /$H^+$ antiporter confers salt tolerance on a fresh water cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. USA 99, 4109-4114 -
Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T., Incharoensakdi, A. and Takabe, T. (2001) Halotolerant cyanobacterium Aphanothece halophytica contains an
$Na^+$ /$H^+$ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J. Biol. Chem. 276, 36931-36938 https://doi.org/10.1074/jbc.M103650200
Cited by
- Reduced isotope fractionation by denitrification under conditions relevant to the ocean vol.92, 2012, https://doi.org/10.1016/j.gca.2012.05.020
- Development of Media for the Cultivation of Enterobacter amnigenus GG0461 and its Nitrate Uptake vol.54, pp.4, 2011, https://doi.org/10.3839/jabc.2011.041
- Na+-stimulated nitrate uptake with increased activity under osmotic upshift in Synechocystis sp. strain PCC 6803 vol.27, pp.10, 2011, https://doi.org/10.1007/s11274-011-0706-6