과제정보
연구 과제 주관 기관 : Crop Functional Genomics Center, Ministry of Science and Technology of Korea
참고문헌
- Abdulle, R., Mohindra, A., Fernando, P., and Heikkila, J. J. (2002) Xenopus small heat shock proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a folding- competent state. Cell Stress Chap. 7, 6-16 https://doi.org/10.1379/1466-1268(2002)007<0006:XSHSPH>2.0.CO;2
- Anderson, L. O., Borg, H., and Mikaelesson, M. (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20, 199-202 https://doi.org/10.1016/0014-5793(72)80793-2
-
Bova, M. P., Ding, L. L., Horwitz, J., and Fung, B. K. K. (1997) Subunit exchange of
${\alpha}$ A-crystallin. J. Biol. Chem. 272, 29511- 29517 https://doi.org/10.1074/jbc.272.47.29511 - Bova, M. P., Mchaourab, H. S., Han, Y., and Fung, B. K. K. (2000) Subunit exchange of small heat shock proteins. J. Biol. Chem. 275, 1035-1042 https://doi.org/10.1074/jbc.275.2.1035
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Buchanan, B., Gruissem, R., and Jones, E. (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland
- Chen, Q., Osteryoung, K., and Vierling, E. (1994) A 21 kDa chloroplast heat-shock protein assembles into high molecular weight complexes in vivo and on organelle. J. Biol. Chem. 269, 13216-13223
- Cho, E. K. and Hong, C. B. (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J. Plant Biol. 47, 149-159 https://doi.org/10.1007/BF03030646
- Chowdary, T. K., Raman, B., Ramakrishna, T., and Rao, C. M. (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J. 381, 379-387 https://doi.org/10.1042/BJ20031958
-
Das, K. P. and Surewicz, W. K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of
${\alpha}$ -crystallin. FEBS Lett. 369, 321-325 https://doi.org/10.1016/0014-5793(95)00775-5 - Ehrnsperger, M., Gräber, S., Gaestel, M., and Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221-229 https://doi.org/10.1093/emboj/16.2.221
- Ehrnsperger, M., Lilie, H., Gaestel, M., and Buchner, J. (1999) The dynamics of Hsp25 quarternary structure. J. Biol. Chem. 274, 14867-14874 https://doi.org/10.1074/jbc.274.21.14867
- Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., et al. (1999) Hsp26: a temperature-regulated chaperone. EMBO J. 18, 6744-6751 https://doi.org/10.1093/emboj/18.23.6744
- Helm, K. W., LaFayette, P. R., Nagao, R. T., Key, J. L., and Vierling, E. (1993) Localization of small heat shock proteins to the higher plant endomembrane system. Mol. Cell. Biol. 13, 238- 247
- Helm, K. W., Lee, G. J., and Vierling, E. (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114, 1477-1485 https://doi.org/10.1104/pp.114.4.1477
- Joe, M. K., Park, S. M., Lee, Y. S., Hwang, D. S., and Hong, C. B. (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol. Cells 10, 519-524 https://doi.org/10.1007/s10059-000-0519-1
- Kim, R., Kim, K. K., Yokota, H., and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 95, 9129-9133
- Kim, K. P., Joe, M. K., and Hong, C. B. (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci. 167, 1017-1025 https://doi.org/10.1016/j.plantsci.2004.05.043
- Kirschner, M., Winkelhaus, S., Thierfelder, J., and Nover, L. (2000) Transient expression and heat stress induced aggregation of endogenous and heterologous small heat stress proteins in tobacco protoplasts. Plant J. 24, 397-412 https://doi.org/10.1046/j.1365-313x.2000.00887.x
- Lee, G. J., Pokala, N., and Vierling, E. (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270, 10432-10438 https://doi.org/10.1074/jbc.270.18.10432
- Lund, A. A., Blum, P. H., Bhattramakki, D., and Elthon, T. E. (1998) Heat-stress responsive of maize mitochondria. Plant Physiol. 116, 1097-1110 https://doi.org/10.1104/pp.116.3.1097
- Miernyx, J. A. (1997) The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci. 2, 80-87
- Mogelsvang, S. and Simpson, D. J. (1998) Protein folding and transport from the endoplasmic reticulum to the Golgi apparatus in plants. J. Plant Physiol. 153, 1-5
- Oh, W. K. and Song, J. (2003) Cooperative interaction of Hsp40 and TPR1 with Hsp70 reverses Hsp70-HspBp1 complex formation. Mol. Cells 16, 84-91
- Park, S. M. (2002) Structural and Functional Diversity of Small Heat-Shock Proteins in Nicotiana tabacum. Ph.D. thesis, Seoul National University, Seoul
-
Plater, M. L., Goode, D., and Crabbe, M. J. C. (1996) Effects of site-directed mutations on the chaperone-like activity of
$\alpha$ Bcrystallin. J. Biol. Chem. 271, 28558-28566 https://doi.org/10.1074/jbc.271.45.28558 - Sambrook, J., Fristsch, E. F., and Maniatis, T. (1989) Molecular cloning; A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
- Sanger, J., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467
- Scharf, K. D., Siddique, M., and Vierling, E. (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6, 225-237 https://doi.org/10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2
- Schirmer, E. C., Glover, J. R., Singer, M. A., and Lindquist, S. (1996) HSP100/C1p proteins; a common mechanism explains diverse functions. Trend Biochem. Sci. 21, 289-296
- Siegler, P. B., Xu, Z., Rye, H. S., Burston, S. G., Fenton, W. A., et al. (1998) Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581-608 https://doi.org/10.1146/annurev.biochem.67.1.581
- Sung, D. Y., Kaplan, F., Lee, K. L., and Guy, C. L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179-187 https://doi.org/10.1016/S1360-1385(03)00047-5
-
van Montfort, R., Slingsby, C., and Vierling, E. (2002) Structure and function of the small heat shock protein/
${\alpha}$ -crystalline family of molecular chaperones. Adv. Prot. Chem. 59, 105-156 - Vierling, E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579-620 https://doi.org/10.1146/annurev.pp.42.060191.003051
- Waters, E. R. (1995) The molecular evolution of the small heatshock proteins in plants. Genetics 141, 785-795
- Waters, E. R. and Vierling, E. (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organellelocalized protein. Proc. Natl. Acad. Sci. USA 96, 14394-14399
- Waters, E. R., Lee, G. J., and Vierling, E. (1996) Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325-338 https://doi.org/10.1093/jxb/47.3.325
- Wehmeyer, N., Hernandez, L. D., Finkelstein, R. R., and Vierling, E. (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 112, 747-757 https://doi.org/10.1104/pp.112.2.747