Expression of Toll-like Receptor-2 on the Peripheral Blood Monocytes in Kawasaki Disease Patients

가와사끼병 환자에서 분리한 CD14양성 세포에서 Toll-like Receptor-2의 발현

  • Hwang, Dae Hwan (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Han, Jung Woo (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Choi, Kyung Min (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Shin, Kyung Mi (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kim, Dong Soo (Department of Pediatrics, Yonsei University College of Medicine)
  • 황대환 (연세대학교 의과대학 소아과학교실) ;
  • 한정우 (연세대학교 의과대학 소아과학교실) ;
  • 최경민 (연세대학교 의과대학 소아과학교실) ;
  • 신경미 (연세대학교 의과대학 소아과학교실) ;
  • 김동수 (연세대학교 의과대학 소아과학교실)
  • Received : 2004.09.14
  • Accepted : 2004.10.15
  • Published : 2005.03.15

Abstract

Objective : Toll like receptor(TLR) is known to be involved in innate immunity. Many microbial antigens stimulate TLR, and as a result of intracellular signal transduction, they activate nuclear factor-kB which produces diverse inflammtory cytokines. Until now, many research topics in Kawasaki disease focused on cytokine increasement. In this study, we aim to reveal TLR increasement which might be associated with initiation of inflammatory response. Methods : We obtained the peripheral blood of ten patients who were diagnosed with Kawasaki disease in Yonsei University College of Medicine from March 2003 to August 2003, as well as those of a febrile control group and the same number of a normal control group. Flow cytometry was done in all samples for quantification of TLR-2 expression in CD14 positive monocyte. And we also extracted total RNA of periphral monocyte and quantificated expression of TLR-2 mRNA by RT-PCR. Results : The expression of TLR-2 in Kawasaki disease increased significantly compared with the normal control group but not when compared with the febrile control group. And the expression decreased slightly in the subacute phase of Kawasaki disease compared with the acute phase, but this was statistically insignificant. mRNA expression of TLR-2 in peripheral blood monocyte also increased in the acute phase of Kawasaki disease. Conclusion : Expression of TLR-2 in Kawasaki disease increased when compared with the normal control group, which means that innate immunity is associated with the pathogenesis of Kawasaki disease.

목 적 : 본 연구에서는 가와사끼병에서 toll-like receptor(TLR)의 발현정도를 살펴 염증반응이 유발되기 시작하는 기전에 대해 접근하고자 하였다. 방 법 : 2003년 3월부터 8월까지 연세의료원에서 가와사끼병으로 진단 받은 환아 10명과 발열대조군 10명 및 정상대조군 10명의 말초혈액을 얻은 후 유세포분석기(flow cytometry)를 시행하여 CD14 양성인 단핵구에서의 TLR-2 발현정도를 측정하였다. 또한 말초 혈액 단핵구의 total RNA를 분리한 후 역전사중합효소 연쇄반응(RT-PCR)을 시행하여 TLR-2의 mRNA 발현을 살펴보았다. 결 과 : 환자군에서의 TLR-2 발현은 정상대조군보다 통계적으로 유의하게 증가되어 있었으나 임상경과에 따른 양상을 보면 급성기보다 아급성기에서 감소하였지만 통계적으로 유의한 차이는 보이지 않았고 환자군과 발열대조군의 TLR-2 발현도 의미있는 차이를 보이지 않았다. 또한 급성기 환자군의 말초혈액 단 핵구에서 TLR-2의 mRNA 발현이 증가되어 있었다. 결 론 : TLR-2의 발현은 가와사끼병 환자에서 정상대조군과 비교하여 증가되어 있었으며 이는 TLR 및 이를 통한 선천성 면역계(innate immunity)가 가와사끼병의 병인과 연관될 수 있음을 시사한다. 앞으로 TLR의 발현이 가와사끼병에서의 염증유발에 있어 구체적으로 어떤 역할을 하는지에 대한 연구가 더 필요할 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 연세의대

References

  1. Ohashi K, Burkart V, Flohe S, Kold H. Cutting edge : heat shock protien 60 is a putative endogenous ligand of the toll-like receptor 4 complex. J Immunol 2000:164:558-61
  2. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan AB. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998;95:588-93 https://doi.org/10.1073/pnas.95.2.588
  3. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000;12:13-9 https://doi.org/10.1016/S0952-7915(99)00045-X
  4. Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002;168:554-61
  5. Ninomiya Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999;398:252-6 https://doi.org/10.1038/18465
  6. Takaesu G, Kishida S, Hiyama A. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAFG in the IL-1 signal transduction pathway. Mol Cell 2000;5:649-58 https://doi.org/10.1016/S1097-2765(00)80244-0
  7. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397 https://doi.org/10.1038/41131
  8. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 2002;416:194-9 https://doi.org/10.1038/416194a
  9. Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11-6 https://doi.org/10.1016/0167-5699(92)90198-G
  10. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50-3 https://doi.org/10.1126/science.272.5258.50
  11. Medzhitov R, Janeway CA Jr. Innate immunity : impact on the adaptive immune response. Curr Opin Immunol 1997;9:4-9 https://doi.org/10.1016/S0952-7915(97)80152-5
  12. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973-83 https://doi.org/10.1016/S0092-8674(00)80172-5
  13. Hoffmann JA, Kafatos FC, Janeway CA Jr, Ezekowiz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313-8 https://doi.org/10.1126/science.284.5418.1313
  14. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52 https://doi.org/10.1038/32588
  15. Chaudhary PM, Ferguson C, Nguyen V, Nguyen O, Massa HF, Eby M, et al. Cloning and characterization of two Toll/interleukin-1 receptor-like genes TIL3 and TIL4 : evidence for a multigene receptor family in humans. Blood 1998;91:4020-7
  16. Alexopoulou L, Holt AC, Medzhitov R, Falvell RA. Recognition of double stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 2001;413:732-738 https://doi.org/10.1038/35099560
  17. Poltorak A, He X, Smirnoval I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice : mutations in Tlr4 gene. Science 1998;282:2085-8 https://doi.org/10.1126/science.282.5396.2085
  18. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000;25:187-91 https://doi.org/10.1038/76048
  19. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099-103 https://doi.org/10.1038/35074106
  20. Steiner TS, Nataro JP, Poteet-Smith CE, Smith JA, Guerrant RL. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J Clin Invest 2000;105:1769-77 https://doi.org/10.1172/JCI8892
  21. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 1999;73:329-368 https://doi.org/10.1016/S0065-2776(08)60790-7
  22. Hacker H, Vaburas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor associated factor(TRAF) 6. J Exp Med 2000;192:595-600. https://doi.org/10.1084/jem.192.4.595
  23. O'Neill L, Greene C. Signal transduction pathways activated by the IL-1 receptor family : ancient signaling machinery in mammals, insects and plants. J Leuko Biol 1998;63:650-7
  24. Wyllie DH, Kiss-toth E, Visintin A, Smith SC, Boussouf S, Segal DM, et al. Evidence for an accessory protein function for Toll-like receptor 1 in antibacterial responses. J Immunol 2000;165:7125-32
  25. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor 2. Science 1999;285:736-9 https://doi.org/10.1126/science.285.5428.736
  26. Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM, et al. Cutting edge : inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 1999;163:2382-6
  27. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, et al. Activation of Toll-like receptor 2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001;167:416-23
  28. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000;1:398-401 https://doi.org/10.1038/80833
  29. Frantz S, Kelly RA, Bourcier T. Role of TLR2 in the activation of nuclear factor B by oxidative stress in cardiac myocytes. J Biol Chem 2001;276:5197-203 https://doi.org/10.1074/jbc.M009160200
  30. O'Neill L. The Toll/interleukin-1 receptor domain : A molecular switch for inflammation and host defence. Biochem Soc Trans 2000;28:557-63
  31. Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, et al. Differential expression and regulation of Toll-like receptors(TLR) in human leukocytes : selective expression of TLR3 in dendritic cells. J Immunol 2000;164:5998-6004
  32. Visintin A, Mazonni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM. Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 2001;166:249-55
  33. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, et al. Tollip, a new component of the IL-1RI pathways, links IRAK to the IL-1 receptor. Nat Cell Biol 2000;2:346-51 https://doi.org/10.1038/35014038
  34. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996;383:443-6 https://doi.org/10.1038/383443a0
  35. Bertotto A, Spinozzi F, Vagliasindi C, Radicioni M, De Rosa O, Vaccaro R. Tuberculin skin test reactivity in Kawasaki disease. Pediatr Res 1997;41:560-2 https://doi.org/10.1203/00006450-199704000-00017
  36. Sireci G, Dieli F, Salerno A. T cells recognize an immunodominant epitope of heat shock protein 65 in Kawasaki disease. Mol Med 2000;6:581-90
  37. Yokota S. Heat shock protein as a predisposing and immunopotentiating factor in Kawasaki disease. Acta Paediatr Jpn 1991;33:756-64 https://doi.org/10.1111/j.1442-200X.1991.tb02605.x
  38. Takeshita S, Kawase H, Yamamoto M, Fujisawa T, Sekine I, Yoshioka S. Increased expression of human 63-kD heat shock protein gene in Kawasaki disease determined by quantitative reverse transcription-polymerase chain reaction. Pediatr Res 1994;35:179-83 https://doi.org/10.1203/00006450-199402000-00010