DOI QR코드

DOI QR Code

Effects of Melatonin on Gene Expression of IVM/IVF Porcine Embryos

  • Jang, H.Y. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Kong, H.S. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Choi, K.D. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Jeon, G.J. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Yang, B.K. (College of Animal Resources Science, Kangwon National University) ;
  • Lee, C.K. (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, H.K. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University)
  • Received : 2004.02.04
  • Accepted : 2004.07.01
  • Published : 2005.01.01

Abstract

The effect of melatonin on in vitro embryo development and the expression of antioxidant enzyme gene in preimplantation porcine embryos was determined by modified semi-quantitative single cell RT-PCR. Porcine embryos derived from in vitro maturation /in vitro fertilization were cultured in 5% $CO_2$ and 20% $O_2$ at $37^{\circ}C$ in NCSU23 medium. Melatonin was added to medium at concentration of 1nM, 5 nM, and 10 nM. When treated with 1nM (39.0%) of melatonin, the developmental rate of embryos beyond the morula stage were higher than that of control group (31.0%) (p<0.05). Number of inner cell mass and tropectoderm cell in control (23.0${\pm}$0.5 and 17.3${\pm}$0.8), 1 nM (23.6${\pm}$0.6 and 19.0${\pm}$0.5), and 5 nM (23.3${\pm}$1.1 and 16.3${\pm}$0.8) treated with melatonin were higher than in 10 nM (20.0${\pm}$0.5 and 13.3${\pm}$0.8) treated with melatonin (p<0.05). To develop an mRNA phenotypic map for the expression of catalase, bax and caspase-3, single cell RT-PCR analysis were carried out in porcine IVM/IVF embryo. Catalase was detected in 0, 1 and 5 nM supplemented with melatonin, but bax and caspase-3 were detected in 10 nM treated with melatonin.

Keywords

References

  1. Adler, V., Z. Yin, K. D. Tew and Z. Ronai. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18(45):6104-6111.
  2. Borlongan, C. V., M. Yamamoto, N. Takei, M. Kumazaki, C. Ungsuparkorn, H. Hida, P. R. Sanberg and H. Nishino. 2000. Glial cell survival is enhanced during melatonin induced neuroprotection against cerebral ischemia. FASEB 14:1307-1317.
  3. Chen, S. T. and J. I. Chuang. 1999. The antioxidant melatonin reduces cortical neuronal death after intrastriatal injection of kainate in the rat. Exp. Brain Res. 124:241-247.
  4. El-Hage, S. S. and M. Singh. 1990. A 5-fold reduction in sisterchromatid exchange following implantation of mouse embryos is not directly related to the expression of embryonic genes responsible for oxygen radical metabolism. Mutat. Res. 232(2):217-26. https://doi.org/10.1016/0027-5107(90)90127-P
  5. Goto, Y., Y. Noda, K. Narimoto, Y. Umaoka and T. Mori. 1992. Oxidative stress on mouse embryo development in vitro. Free Radical Biol. Med. 13:673-679.
  6. Grupen, C. G., H. Nagashima and M. B. Nottle. 1995. Cysteamine enhanced in vitro development of porcine oocytes matured and fertilized in vitro. Biol. Reprod. 53:173-178.
  7. Jang, H. Y., H. S. Kong, S. S. Lee, K. D. Choi, G. J. Jeon, B. K. Yang and H. K. Lee. 2004. Expression of the antioxidant enzyme and apoptosis genes in in vitro Maturation /in vitro Fertilization Porcine Embryos. Asian-Aust. J. Anim. Sci. 17:33-38.
  8. Johnson, M. H. and M. H. Nasr-Esfahani. 1994. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays. 16(1):31-38.
  9. Klein, D. C., M. A. Namboodiri and D. A. Auerbach. 1981. The melatonin rhythm generating system: developmental aspects. Life Sci. 28 (18):1975-1986.
  10. Lezoualc'h, F., T. Skutella, M. Widmann and C. Behl. 1996. Melatonin prevents oxidative stress-induced cell death in hippocampal cells. Neuroreport 7:2071-2077.
  11. Mayo, J. C., R. M. Sainz, H. Uria, I. Antolin, M. M. Esteban and C. Rodriguez. 1998. Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson's disease. J. Pineal Res. 24:179-192.
  12. Nasr-Esfahani, M. H., J. R. Aitken and M. H. Johnson. 1990. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos development in vitro and in vivo. Development 109:501-507.
  13. Niwa, K. 1993. Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fertil. 48:49-59.
  14. Parchment, R. E. 1991 Programmed cell death (apoptosis) in murine blastocysts: extracellular free-radicals, polyamines and other cytotoxic agents. In vivo, 5(5):493-500.
  15. Park, C. K., F. Roy and M. A. Sirard. 1996. The effect of free radicals and anti-oxidant during in vitro maturation and fertilization of porcine oocytes. Theriogenology 45:275 (Abstr.).
  16. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. 48(Suppl):61-73.
  17. Poeggeler, B., R. J. Reiter, D. X. Tan, L. D. Chen and L. C. Manchester. 1993. Melatonin, hydroxyl radical-mediated oxidative damage and aging: A hypothesis. J. Pineal Res. 14:151-168.
  18. Raina, V. S., A. K. Gupta and Kiran Singh. 2002. Effect of antioxidant fortification on preservability of buffalo semen. Asian-Aust. J. Anim. Sci. 15(1):16-18.
  19. Reiter, R. J., B. Poeggeler, D. X. Tan, L. D. Chen, L. C. Manchester and J. M. Guerrero. 1993. Antioxidant activity of melatonin: A novel action not requiring a receptor. Neuroendocrinol. Lett. 15:103-116.
  20. Rieger, D., N. M. Loskutoff and K. J. Betteridge. 1992. Developmental related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4(5):547-57. https://doi.org/10.1071/RD9920547
  21. Skaper, S. D., B. Ancona, L. Facci, D. Franceschini and P. Giusti. 1998. Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB. 12:725-731.

Cited by

  1. and the hormone secretion of COCs vol.5, pp.2167-8359, 2017, https://doi.org/10.7717/peerj.3485
  2. Comparative efficacy of antioxidant retinol, melatonin, and zinc during in vitro maturation of bovine oocytes under induced heat stress vol.40, pp.13036181, 2016, https://doi.org/10.3906/vet-1507-15
  3. In vitro Arsanilic Acid Induction of Apoptosis in Rat Hepatocytes vol.19, pp.9, 2005, https://doi.org/10.5713/ajas.2006.1328
  4. Parthenogenetic Activation of Porcine Oocytes and Isolation of Embryonic Stem Cells-like Derived from Parthenogenetic Blastocysts vol.20, pp.10, 2005, https://doi.org/10.5713/ajas.2007.1510
  5. Addition of Macromolecules to PZM-3 Culture Medium on the Development and Hatching of In vitro Porcine Embryos vol.20, pp.12, 2005, https://doi.org/10.5713/ajas.2007.1820
  6. Effect of Essential and Nonessential Amino Acids in North Carolina State University (NCSU)-23 Medium on Development of Porcine In vitro Fertilized Embryos vol.20, pp.5, 2005, https://doi.org/10.5713/ajas.2007.693
  7. Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture vol.21, pp.7, 2008, https://doi.org/10.5713/ajas.2008.70413