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DEGREE OF APPROXIMATION TO A SMOOTH
FUNCTION BY GENERALIZED TRANSLATION
NETWORKS

NagMwoo HaHM, MEEHYEA YANG* AND BuM IL HONG

Abstract. We obtain the approximation order to a smooth func-
tion on a compact subset of R by generalized translation networks.
In our stﬁdy, the activation function is infinitely many times contin-
uously differentiable function but it does not have special properties
around oo and —oo like a sigmoidal activation function. Using the
Jackson’s Theorem, we get the approximation order. Especially, we
obtain the approximation order by a neural network with a fixed
threshold.

1. Introduction

A feedforward network with one hidden layer is of the form

Z cia(aix + bi)

i=1
where the weight a;, the threshold b; and ¢; are real numbers for 1 < i <
n and o is an activation function. In most density problems, a sigmoidal
function is used as an activation function. Note that a sigmoidal function
is a function o : R — R such that

lim o(t) =1, lim o(t)=0. (1.1)
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Cybenko[4] proved that any feedforward neural network with a continu-
ous sigmoidal activation function can approximate any continuous func-
tion to any degree of precision on compact subsets of R if an unlimited
number of neurons is permitted. Chen and Chen|2] extended the results
of Cybenko by proving that any feedforward network with bounded sig-
moidal activation function can approximate any continuous function on
a compact subset of R and their result is very good since the activation
function need not be continuous. Leshno, Lin, Pinkus and Schocken|[5)
established a complete characterization of the activation functions that
lead to universal approximation of continuous functions on compact sub-
sets of R. Other papers[8, 9] proved some density and complexity results
without the differentiability of the activation function. In [6], Medvedeva
used the infinitely differentiable activation function and this gave us the
motivation of this paper.

There are some differentiable activation functions. One example is

the squashing function which is defined as
o(z) =(1+e %)} (1.2)

and the other example is the Gaussian function which is defined as

-

o(z)=e (1.3)

In [7], Mhaskar and Hahm introduced the generalized translation net-

works. A generalized translation network with n neurons is of the form

n
> cilai -z +b;) (1.4)
i=1

where a;, b; and ¢; are real numbers for 1 < ¢ < n and 9 is a real-valued

function defined on R. For a fixed natural number n, II,, denotes

the set of such functions. In the generalized translation network, the
activation function 1 doesn’t have a special properties around oo and

—oo like a sigmoidal function.
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Using this generalized translation network, we obtain the approxima-
tion order to a finitely many times continuously differentiable function
on a compact subset of R. Basically, we use the divided difference for-
mula to get a polynomial approximation by the generalized translation
network and get an approximation order using the Jackson’s theorem
for differentiable functions. In our approximation, the threshold in the

superposition of an activation function is fixed.

2. Preliminaries

In order to get a main result, we need the following.
Definition 2.1. Let f(z) be defined in a closed interval I and let

w(8) = w(f,8) = sup|f(z1) — f(z2)| (2.1)
for zq,x9 € I with |zq — 22| < 6.

Note that the modulus of continuity satisfies the following properties.
(1) w(t)—0ast—0

(2) w(t) is a nondecreasing function

(3) w(t1 +t2) < w(t) +w(te) for any t1,t2 > 0.

Note that if f is k times continuously differentiable on [a,b], then
|f®)(z)] < M for each z € [a,b] and some M > O since f®)(z) is
continuous on a compact subset of R. Thus w(f*),§) < 2M for any
§>0.

Throughout the paper, the domain of a target function is [~1, 1] and

s0 we use || - || instead of || - [|{-1,1],c0-
3. Main Results

First of all, we approximate polynomials on [—1, 1] by the generalized

translation networks.
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Theorem 3.1. Let ¢ be a real-valued function on R which is infinitely
many times differentiable in some open interval (b—4, b+4) in R. Assume
that for any k,

D*y(b) # 0 (3.1)
and let Py(z) = Y p_ockz®. Then for any e > 0, there exists a general-
ized translation network G € Hgn“zzgn“z, " such that

[|Pr. — Glloo < €.

Proof. Consider z* for 0 < k < n. From the formula

k
wk(a’x) = %'l/)(a "z + b) = xk ’ ¢(k)(a T+ b)’

we have
2 = (® ()7 (0, 2).

For any h > 0, the formula
k

Ueh = Z U“”()(h-i-x—i—b)

i=0

represents a divided difference for ¢4 (0,z). In addition, we have
¥kpn — ¥r(0,)]|loc < M - h

where M is a constant depending on v and n, and |h| < §/n.
Now, we choose

é €
Mo (RN (B) 71 - Jak|

Then, the generalized translation network G € Il (ni1)(n42) " defined by
2 3

}

ho = mm{

G = ar(@® ()71 Uy py(x)
k=0

satisfies
”Pn - GHoo < €.

This completes the proof. Ol
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Next theorem is the Jackson’s theorem for differentiable functions[10,

page 261].

Theorem 3.2. Let f be a k times continuously differentiable function
on [—1,1] and n > k. Then, there exists a polynomial P, with degree n

such that
=) w(f®,2)

where M}, is a constant depending only on k.

1f = Palloc < Mg - (

As we mentioned early, || ]| < D for some constant D > 0 and
so we have w(f*),2) < 2D. Thus

C
I|f = Palleo < % (3.2)
where C is a constant depending on k and f.

From Theorem 3.1 and 3.2, we get the following result.

Theorem 3.3. Let f be a k times continuously differentiable function
on [—1,1] and let ¢ be a real-valued function on R which is infinitely
many times differentiable in some open interval (b—4, b+4) in R. Assume
that

DFv(b) #0
Then, there exists a generalized translation network G € Hgn+1)2(n+22 "
such that

C
HPn_GHoo S m

Proof. Let € > 0 be given. From (3.2), there exists a polynomial P,

of degree n such that

C
Hf—Pn”oo S J

where C is a constant depending on k and f. For the polynomial P,
there exists a generalized translation network G € II g"+122gn+2) » such
that

HPn — Glloo < €
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by Theorem 3.1. In all,
”f— GHoo < ||f”‘PnHoo+ ”Pn “GHoo

C
< — e

Since € > 0 is arbitrary, we get the result. a
4. Discussion

In most papers related to neural network approximation, only the
continuity property is given to the target function. But, D. Chen][]]
conjected the possibility that if an activation function ¢ is an infinitely
differentiable sigmoidal function and the target function f € C*[~1,1],

then there is a neural network G with n neurons such that

c
— Gl € —.
If = Gl < =
In Theorem 3.3, we "almost” proved this conjecture since we get the
result using w neurons instead of n neurons.

In most paper related to neural network approximation, the weights
and the thresholds vary even for the density result. In [3], Chui and Li
showed that a continuous neural networks with ”integer weights” and
"free thresholds” can approximate any continuous target function on a
compact subset of R. As we pointed out before, the threshold in the
generalized translation network approximation is fixed and so this is

remarkable.

Now, we are considering the possibility of simultaneous approxima-
tion by generalized translation networks. In fact, for any m with 0 <

m < k, it is computed inductively that

(Wkn) ™ (2)

k
1 Nk —
= k;(k_m+ 1)hk—m 'Ezo(_l)(k—-m—z)( ’Lm>'¢(m)(h7’m+b)
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In addition, we can easily compute that
L A
PM(z) = Z H'!ci o A
1=m
The study of simultaneous neural network approximation is very impor-
tant in engineering, especially in the study of robot learning of smooth
movement. We are trying to get the complexity results of simultaneous
approximation by generalized translation networks. That is, we want to

compute the approximation order related to
157 = G o

for 0 < m < k where f,G and k satisfy the conditions of Theorem 3.3.

We will explore this in the future.
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