Acknowledgement
Supported by : NSA, NSF
References
- Ars Comb. v.22 Multiplier theorem for a difference list Arasu, K.T.;Ray-Chaudhuri, D.K.
- Designs, Codes & Crypt. v.5 Difference sets in abelian groups of p-rank two Arasu, K.T.;Sehgal, S.K.
- Australasian J. Combinatorics Cyclic difference covers Arasu, K.T.;Sehgal, S.K.
- Design Theory Beth, T.;Jungnickel, D.;Lenz, H.
- Bier, T.
- J. Combin. Des. v.7 Old and new designs via difference multisets and strong difference families Buratti, M.
- Inform. Process. Lett. v.75 Quorums from difference covers Colbourn, Charles J.;Ling, Alan C.H.
- Proc. Cambridge Phil. Soc. v.74 Integer difference covers which are not k-sum covers, for k = 6, 7 Connolly, D.
- Proc. Cambridge Phil. Soc. v.75 Difference covers that are not k-sum covers II Connolly, D.M.;Williamson, J.H.
- Archiv der Math. v.63 Partial difference sets in p-groups Davis, J.A.
- Mathematika v.20 Difference covers which have small k-sums for any k Haight, J.A.
- Mathematika v.21 Note on difference covers that are not k-sum-covers Jackson, T.H.;Rehman, F.
- Proc. Cambridge Phil. Soc. v.72 Difference covers that are not k-sum-covers I Jackson, T.H.;Williamson, J.H.;Woodall, D.R.
- J. Comb. Theory Ser A v.76 Construction of partial difference sets and relative difference sets using Galois rings II Ray-Chaudhuri, D.K.;Yu Qing Chen;Qing Xiang
- An Introduction to Group Rings Cesaro Polcino Milies;Sehgal, Sudarshan K.
- Proceedings of the twentythird South Eastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Number v.90 Cyclic difference covers through 133 Wiedemann, Dong