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In this paper, an error-free Butcher algorithm is 
introduced to study the singular system of a linear 
electrical circuit for time invariant and time varying cases. 
The discrete solutions obtained using Runge-Kutta (RK)-
Butcher algorithms are compared with the exact solutions 
of the electrical circuit problem and are found to be very 
accurate.  Stability regions for the single term Walsh 
series (STWS) method and the RK-Butcher algorithm are 
presented. Error graphs for inductor currents and 
capacitor voltages are presented in a graphical form to 
show the efficiency of the RK-Butcher algorithm.  This 
RK-Butcher algorithm can be easily implemented in a 
digital computer for any singular system of electrical 
circuits. 
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I. Introduction 

Alexander and Coyle [1], Evans [2], Evans and Yaakub [3], 
[4], Lambert [5], and Murugesan and others [6]-[10] have 
applied RK methods to determine numerical solutions of 
problems modeled as initial value problems involving 
differential equations that arise in the fields of science and 
engineering. Though the RK method had been introduced at 
the turn of the 20th century, research in this area is still very 
active and its applications are enormous. This is because of the 
method’s nature of extending accuracy in the determination of 
approximate solutions and its flexibility.  

Runge-Kutta methods have also become very popular both 
as computational techniques and as subject for research, as 
discussed by Butcher [11], [12] and Shampine [13]. This 
method was derived by Runge around the year 1894 and 
extended by Kutta a few years later. They developed 
algorithms to solve differential equations efficiently and give 
solutions closer to the equations’ exact solutions. 

Runge-Kutta (RK) algorithms have always been considered 
superb tools for the numerical integration of ordinary 
differential equations (ODEs). The fact that RK methods are 
self-starting, easy to program, and show extreme accuracy and 
versatility in ODE problems has led to their continuous 
analysis and use in mathematical and engineering research. 
One of the most exciting developments in RK usage has been 
the discovery that, by a judicious re-arrangement of the interim 
values of the RK predictors, one can obtain a second predictor 
of one order less. These two equations are generally referred to 
as an RK pair. Fehlberg [14] was among the first to suggest on 
theoretical grounds that the difference between the two 
predictors would be directly proportional to the local truncation 
error (LTE). The unusual success of the Fehlberg approach was 
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addressed in the popular text by Forsythe and others [15] and 
cited as the “state of the art” of the RK code. The LTE is then 
used as a test to see whether a step has been successful. If not, 
the step size is reduced (usually halved) until the LTE passes 
the tolerance requirement. The beauty of the RK pair is that it 
requires no extra function evaluations, which is the most time 
consuming aspect of all ODE solvers. This breakthrough has 
initiated a search for RK algorithms of higher and higher order 
for better error estimates. 

Butcher [11] derived the best RK pair along with an error 
estimate by all statistical measures, which appeared as the RK-
Butcher algorithms. Morris Bader [16], [17] introduced the 
RK-Butcher algorithms for finding the truncation error 
estimates and intrinsic accuracies, and for the early detection of 
stiffness in coupled differential equations that arises in 
theoretical chemistry problems. Recently, Murugesan and 
others [18] and Park and others [19] applied the RK-Butcher 
algorithm for finding the numerical solution of an industrial 
robot arm control problem and optimal control of singular 
systems. In this paper, we introduce the RK-Butcher algorithm 
for the singular system of a linear electrical circuit problem 
with more accuracy for time-invariant and time varying cases. 

II. RK-Butcher Algorithms 

 The normal order of an RK algorithm is the approximate 
number of leading terms of an infinite Taylor series, which 
calculates the trajectory of a moving point, as discussed by 
Shampine and Gordon [20]. The remainder of the excluded 
infinite sum is referred to as the local truncation error (LTE). 
The RK algorithms are forward looking predictors; that is, they 
use no information from preceding steps to predict the future 
position of a point. For this reason, they require a minimum of 
input data and consequently are very easy to program and 
simple to use. 

The general p-stage Runge-Kutta method for solving an 
initial value problem 
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with c and b as p dimensional vectors and A(aij) as the p×p 

matrix. Then, the RK-Butcher algorithm of (1) is of the 
following form. 
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The formation of the Butcher array of (2) then takes the 
following form. 
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 This Butcher array plays a vital role in the study of stability 
regions and is presented in the later sections.  

III. Study of Linear Electrical Circuit 

 Consider the physical model of an electrical circuit 
discussed by Chua and Lin [21] and Balachandran and 
Murugesan [22], as shown in Fig. 1. 
 

 

Fig. 1. Electrical circuit. 
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This electrical circuit is governed by the following hybrid 

equations [23]. 
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Since cc vCi =  and ll iLv = , substituting 11 2vi = , 
22 2vi = , 33 2iv = , and 44 2iv =  into (3) we then obtain 
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After re-arranging the terms, we obtain the singular system of 
equations as 
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where K is an n×n matrix, but singular in nature; therefore it is 
called singular systems. It is also called “generalized state-
space systems” or “descriptor systems.” A is an n×n matrix, B 
is an n×r matrix, x(t) is an n-state vector, and u(t) is an r-input 
vector. 

In some cases, the variables have some inherent meaning 
such as voltage, current, position, velocity, or acceleration. Or, 
the coefficient matrices have some special structures that may 
be lost by manipulating a system of the form in (6) into an 
ordinary state-space system. 
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we obtain the exact solutions of (5) as 

( )

( )

( )

( )








































−−=

++−










 −
−









 +
−=

++−










 −
−









 +
−=

++−










 −
+−










 +
−−=

+−+−










 −
+−










 +
−−=

TTiivv

tt

ttti

tt

ttti

tt

t

ttv

ttt

t

ttv

]81807170[)]0()0()0()0([

with
10515

8
51exp93

8
51exp93)(

106214

8
51exp93

8
51exp93)(

164226

8
51exp51

2
93

8
51exp51

2
93)(

163
32

327

8
51exp51

2
93

8
51exp51

2
93)(

4321

2

4

2

3

2

2

32

1

 (8) 

The discrete solutions of (5) with x(t)=[v1(t) v2(t) i3(t) i4(t)]T 
are evaluated using the RK-Butcher algorithms represented in 
(2), and the results are compared with the solutions obtained by 
the STWS method by Balachandran and Murugesan [22] and 
are shown in Tables 1 through 4 along with the exact solutions 
calculated using (8). An error graph is presented for the 
variables v1(t), v2(t), i3(t) and i4(t) in Figs. 2 through 5 at various 
time intervals. 
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Table 1. Solutions of (2) and (8) for v1(t). 

v1(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 70.000000 70.000000 0.000000 70.000000 0.000000 

2 0.25 75.156776 75.156799 0.000003 75.156776 0.000000 

3 0.50 80.904671 80.904674 0.000003 80.904671 0.000000 

4 0.75 87.289886 87.289889 0.000003 87.289886 0.000000 

5 1.00 94.365692 94.365698 0.000006 94.365692 0.000000 

6 1.25 102.193207 102.193215 0.000008 102.193207 0.000000 

7 1.50 110.842285 110.842396 0.000011 110.842285 0.000000 

8 1.75 120.392502 120.392517 0.000015 120.392502 0.000000 

9 2.00 130.934204 130.934219 0.000015 130.934204 0.000000 

 

 

Table 2. Solutions of (2) and (8) for v2(t). 

v2(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 71.000000 71.000000 0.000000 71.000000 0.000000 

2 0.25 76.443237 76.443240 0.000003 76.443237 0.000000 

3 0.50 82.571335 82.571338 0.000003 82.571342 0.000000 

4 0.75 89.461761 89.461764 0.000003 89.461769 0.000000 

5 1.00 97.199028 97.199034 0.000006 97.199028 0.000000 

6 1.25 105.875496 105.875504 0.000008 105.875496 0.000000 

7 1.50 115.592285 115.592296 0.000011 115.592285 0.000000 

8 1.75 126.460213 126.460228 0.000015 126.460205 0.000000 

9 2.00 138.600861 138.600876 0.000015 138.600861 0.000000 

 

 

Table 3. Solutions of (2) and (8) for i3(t). 

i3(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 -80.000000 -80.000000 0.000000 -80.000000 0.000000 

2 0.25 -89.747978 -89.747979 0.000001 -89.747978 0.000000 

3 0.50 -100.432671 -100.432674 0.000003 -100.432671 0.000000 

4 0.75 -112.161095 -112.161101 0.000006 -112.161095 0.000000 

5 1.00 -125.052383 -125.052391 0.000008 -125.052383 0.000000 

6 1.25 -139.239059 -139.239072 0.000013 -139.239059 0.000000 

7 1.50 -154.868408 -154.868422 0.000014 -154.868423 0.000000 

8 1.75 -172.104084 -172.104099 0.000015 -172.104084 0.000000 

9 2.00 -191.127686 -191.127701 0.000015 -191.127701 0.000000 
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Table 4. Solutions of (2) and (8) for i4(t). 

i4(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 -81.000000 -81.000000 0.000000 -81.000000 0.000000 

2 0.25 -91.060478 -91.060481 0.000003 -91.060478 0.000000 

3 0.50 -102.182671 -102.182674 0.000003 -102.182671 0.000000 

4 0.75 -114.473595 -114.473598 0.000003 -114.473595 0.000000 

5 1.00 -128.052383 -128.052389 0.000006 -128.052383 0.000000 

6 1.25 -143.051559 -143.051570 0.000011 -143.051559 0.000000 

7 1.50 -159.618408 -159.618419 0.000011 -159.618423 0.000000 

8 1.75 -177.916580 -177.916593 0.000013 -177.916580 0.000000 

9 2.00 -198.127686 -198.127701 0.000015 -198.127701 0.000000 

 

 
 

Fig. 2. Error graph for v1(t). 
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Fig. 3. Error graph for v2(t). 
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Fig. 4. Error graph for i3(t). 
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Fig. 5. Error graph for i4(t). 
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IV. Stability Analyses  

Consider test equation yy λ= , where λ is a constant, is 
complex in nature, and is used to determine the stability region 
of the method.  
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Then, the 5th order predictor formula is 
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If we divide both sides by yn, the stability polynomial Q(z)= 
yn+1/yn is then given as 
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Figure 6 shows a comparative study of the stability regions 
of the STWS method and the RK-Butcher algorithm.  In this 
stability region, the range for the real part of λ  in STWS is    
–3.284 < Re (z) < 0.0, whereas in the RK-Butcher algorithm it 
is –2.780 < Re (z) < 0.0. 

 
 

Fig. 6. Stability region for STWS and the RK-Butcher algorithms.
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V. Study of Time-Varying Linear Electrical Circuit 

Balachandran and Murugesan [22] applied the STWS method 
for the time–invariant electrical circuit problem. Here, we 
introduce the RK-Butcher algorithm for studying the time-varying 
electrical circuit, which is represented by a singular system. 

 Consider the electrical circuit depicted in Fig. 1 in section III.   
The following hybrid equation is obtained. 
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This is of the form 

)()()( tButAxtxK += .              (10) 

 In order to study the effectiveness of the time varying 
singular system in electrical circuits, a hypothetical system is 
formed by transforming the matrices K, A, and B, which are 
basically time independent in (9) with time-varying 
components. 

 Hence, the singular system of the time-varying electrical 
circuit is of the form 
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This is of the form )()()()()()( tutBtxtAtxtK += . 

The exact solution of (11) is 
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The discrete solutions of (11) have been determined using 
the RK-Butcher algorithm (with step-size h=0.25) in (2) and 
are compared with the exact solutions of (11) presented in (12) 
along with the solutions obtained by using the STWS method. 
These results are presented in Tables 5 through 8. This RK-
Butcher algorithm yields more accurate results when compared 
to the STWS method. Errors between the exact and discrete 
solutions are also given in Tables 5 through 8. To exhibit the 
efficiency of the discussed methods, an error graph is presented 
for the variables v1(t), v2(t), i3(t) and i4(t) in Figs. 7 through 10 at 
various time intervals. From this, we can observe that the RK-
Butcher algorithm gives more accurate results when compared 
to the STWS method discussed by Balachandran and 
Murugesan [22]. 
 

Table 5. Solutions of (2) and (12) for v1(t). 

Time varying v1(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 1.000000 1.000000 0.000000 1.000000 0.000000 

2 0.25 0.960697 0.960700 0.000003 0.960697 0.000000 

3 0.50 0.842521 0.842524 0.000003 0.842521 0.000000 

4 0.75 0.646642 0.646646 0.000004 0.646642 0.000000 

5 1.00 0.376276 0.376284 0.000008 0.376276 0.000000 

6 1.25 0.036505 0.036516 0.000011 0.036505 0.000000 

7 1.50 -0.366008 -0.366021 0.000013 -0.366008 0.000000 

8 1.75 -0.823387 -0.823400 0.000013 -0.823387 0.000000 

9 2.00 -1.326949 -1.326964 0.000015 -1.326949 0.000000 
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Table 6. Solutions of (2) and (12) for v2(t). 

Time varying v2(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 1.000000 1.000000 0.000000 1.000000 0.000000 

2 0.25 1.023197 1.023200 0.000003 1.023197 0.000000 

3 0.50 1.092521 1.092524 0.000003 1.092521 0.000000 

4 0.75 1.209142 1.206145 0.000003 1.209142 0.000000 

5 1.00 1.376276 1.376280 0.000004 1.376276 0.000000 

6 1.25 1.599005 1.599011 0.000006 1.599005 0.000000 

7 1.50 1.883992 1.884000 0.000008 1.883992 0.000000 

8 1.75 2.239113 2.239124 0.000011 2.239113 0.000000 

9 2.00 2.673051 2.673066 0.000015 2.673051 0.000000 

 

 

Table 7. Solutions of (2) and (12) for i3(t). 

Time varying i3(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 1.000000 1.000000 0.000000 1.000000 0.000000 

2 0.25 1.040643 1.040643 0.000000 1.040643 0.000000 

3 0.50 1.036691 1.036694 0.000003 1.036691 0.000000 

4 0.75 0.988188 0.988191 0.000003 0.988188 0.000000 

5 1.00 0.896933 0.896936 0.000003 0.896933 0.000000 

6 1.25 0.766301 0.766308 0.000007 0.766301 0.000000 

7 1.50 0.600964 0.600975 0.000011 0.600964 0.000000 

8 1.75 0.406530 0.406543 0.000013 0.406530 0.000000 

9 2.00 0.189110 0.189125 0.000015 0.189110 0.000000 

 

 

Table 8. Solutions of (2) and (12) for i4(t). 

Time varying i4(t) Solution number Time t (s) 
Exact solution STWS solution STWS error RK-Butcher solution RK-Butcher error 

1 0.00 0.000000 0.000000 0.000000 0.000000 0.000000 

2 0.25 0.071731 0.071734 0.000003 0.071731 0.000000 

3 0.50 0.159109 0.159112 0.000003 0.159109 0.000000 

4 0.75 0.256500 0.256503 0.000003 0.256500 0.000000 

5 1.00 0.356631 0.356637 0.000006 0.356631 0.000000 

6 1.25 0.450978 0.450986 0.000008 0.450978 0.000000 

7 1.50 0.530227 0.530238 0.000011 0.530227 0.000000 

8 1.75 0.584776 0.584789 0.000013 0.584776 0.000000 

9 2.00 0.605257 0.6050272 0.000015 0.605257 0.000000 
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Fig. 7. Error graph of v1(t) for time varying cases. 
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Fig. 8. Error graph of v2(t) for time varying cases. 
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Fig. 9. Error graph of i3(t) for time varying cases. 
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Fig. 10. Error graph of i4(t) for time varying cases. 
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VI. Conclusions 

The discrete solutions obtained using the RK-Butcher 
algorithm give more accurate values when compared to the 
STWS method discussed by Balachandran and Murugesan 
[22]. From Tables 1 through 8, we observe that the solutions 
obtained by the RK-Butcher algorithm match well with the 
exact solutions of the electrical circuit problem irrespective of 
whether they are time-invariant or time varying cases, but the 
STWS method yields a little error. From the error graphs 
presented in Figs. 2 through 5 and 7 through 10, we can 
observe that the RK-Butcher algorithm yields much less error 
(almost no error) when compared to the STWS method.  

From Fig. 6, we can predict that the RK-Butcher algorithm is 
useful to smaller time steps, and the STWS method is useful 
for larger time steps to solve the same electrical circuit problem. 
Moreover, this RK-Butcher method is highly stable because it 
is based on the Taylor series method [11], [12], which is also 
highly stable. 
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