
Physical Topology Discovery for

Automatic discovery of physical topology plays a crucial
role in enhancing the manageability of modern metro
Ethernet networks. Despite the importance of the problem,
earlier research and commercial network management
tools have typically concentrated on either discovering
logical topology, or proprietary solutions targeting specific
product families. Recent works have demonstrated that
network topology can be determined using the standard
simple network management protocol (SNMP)
management information base (MIB), but these
algorithms depend on address forwarding table (AFT)
entries and can find only spanning tree paths in an
Ethernet mesh network. A previous work by Breibart et al.
requires that AFT entries be complete; however, that can
be a risky assumption in a realistic Ethernet mesh
network. In this paper, we have proposed a new physical
topology discovery algorithm which works without
complete knowledge of AFT entries. Our algorithm can
discover a complete physical topology including inactive
interfaces eliminated by the spanning tree protocol in
metro Ethernet networks. The effectiveness of the
algorithm is demonstrated by implementation.

Keywords: Physical topology discovery, metro Ethernet
network, SNMP, spanning tree protocol, bridge MIB.

Manuscript received Dec. 09, 2004; revised Mar. 31, 2005.
Myung-Hee Son (phone: +82 42 869 1747, email: mhson@etri.re.kr) and Bheom-Soon Joo

(email: bsjoo@etri.re.kr) are with Broadband Convergence Network Research Division, ETRI,
Daejeon, Korea.

Byung-Chul Kim (email: byckim@cnu.ac.kr) and Jae-Yong Lee (email: jyl@cnu.ac.kr) are
with Information and Communications Engineering Department, Chungnam National
University, Daejeon, Korea.

I. Introduction

Metro Ethernet Networks

Myung-Hee Son, Bheom-Soon Joo, Byung-Chul Kim, and Jae-Yong Lee

Metro Ethernet services [1] are now offered by a wide range
of service providers. Some providers have extended Ethernet
services beyond a metropolitan area network (MAN) and wide
area network (WAN). Thousands of subscribers already use
Ethernet services and their numbers are growing rapidly. These
subscribers have been attracted by the benefits of Ethernet
services, including ease of use, cost effectiveness, and
flexibility. Now the usage of Ethernets has widened from the
LAN environment to MAN and WAN environments.

For a metro Ethernet network, existing technologies for data
transport have scalability limitations relating to bandwidth and
network management. Actually, most system operators do not
manage Ethernet devices because it is not critical in the LAN
environment. However, in the metro Ethernet network
environment, that approach will not work and a new
management capability will be required. In spite of the
importance of the problem, earlier research and commercial
network management tools have typically concentrated on
discovering a logical (that is, Layer-3) topology, which implies
that the connectivity of all Layer-2 devices is ignored, or have
provided limited proprietary solutions targeting specific
product families. The Internet Engineering Task Force (IETF)
has acknowledged the importance of this issue by designating a
“physical topology” simple network management protocol
(SNMP) management information base (MIB) [2], but the
proposal merely reserves a portion of the MIB space without
defining any protocol or algorithm for obtaining the topology
information. Moreover, recent works relating to physical
topology discovery in an Ethernet network [3]-[5] have a
serious common problem which prevents discovery of the
complete physical topology. Their physical topology discovery

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 355

was limited to spanning tree paths, which is described in
section II.

We explain where a physical topology discovery can be used,
for example in capacity provisioning, planning, and
management of the growth of a network; in support of
configuration management for service provisioning; and finally
in support of assurance, for example fault localization and
performance management.

For discovering the physical topology including multiple
redundant paths in a metro Ethernet network, we suggested a
novel and practical algorithm which can perform automatic
discovery while minimizing the overhead of processing an
enormous number of Layer-2 address forwarding table (AFT)
entries in core bridges. Our algorithm uses the standard
interface MIB [6] and bridge MIB [7], and we can discover the
physical topology whenever it is needed.

We begin by describing related work and our contribution.
Section III reviews necessary background information.
Sections IV and V describe our physical topology discovery
algorithm, which derives locating edge bridges,1) neighbor
bridges, and hosts using the spanning tree protocol (STP)
information and the Layer-2 AFT entries. In section VI, we
present our experiments including implementation and test
results and discuss how our solution can be extended to deal
with rapid STP (RSTP) [8] and multiple STP (MSTP) [9].
Finally, section VII concludes the paper.

II. Related Works and Our Contributions

As the trend of moving from Layer-3 communications to
Layer-2 communications has developed, many vendors have
developed proprietary tools and protocols for discovering
physical network connectivity in an Ethernet network. Hitherto,
SNMP-based algorithms for automatically discovering Layer-3
topology are featured in many common network management
tools, such as HP’s OpenView (www.openview.hp.com) and
IBM’s Tivoli (www.tivoli.com). XML-based algorithms for IP
networks [10] are also available; however, these cannot
discover Layer-2 topology. In a recent work related to topology
discovery for metro Ethernet networks, Breibart and others [3]
proposed an algorithm that relies solely on standard AFT
information collected in SNMP MIBs to discover the physical
topology of heterogeneous networks comprising bridges
organized in multiple subnets. Unfortunately, the algorithm
assumes that complete AFT information is available from all
nodes in the underlying network and thus, cannot cope with
hubs or uncooperative switches.2) In a follow-up paper,

1) To be connected to some hosts or routers.
2) The terms “switch” and “bridge” can be used interchangeably; we will primarily use

“bridge” in the remainder of this paper.

Lowekamp and others [4] suggested techniques for inferring
network-element connectivity using incomplete AFT
information and also discussed how to handle dumb,
uncooperative elements. Bejerano and others [5] proposed a
more advanced algorithm using a skeleton path for discovering
physical topology in large multi-subnet networks. A common
feature of those previous works [3]-[5] is that they only use
AFT entries. So, they can only find spanning tree paths and
exclude multiple redundant paths. Even though their
techniques are said to discover the physical topology of
Ethernet networks, they have the limitations of discovering
only Layer-2 spanning tree paths.

The practicality of our algorithm stems from the fact that it
depends solely on standard information routinely collected in
the SNMP MIB [11] of bridges, and it requires no
modifications to the operating system software running on
bridges or hosts. The three previous works [3]-[5] also have the
same advantage as above. However these previous works have
lots of problems: First, AFT entries typically employ an aging
mechanism to evict infrequent source media access control
(MAC) addresses from the AFT. In the case of aging-out,
topology discovery is not feasible. Second, in the metro
Ethernet networks, the size of the AFT ranges from tens of
Kbytes to scores of Mbytes. Moreover, most core bridges
might have hundreds of Mbytes. It will take up to a very long
time to obtain all AFT entries through SNMP and will be
difficult to obtain complete information. Third, all data traffic
must be bi-directional, but real data traffic doesn’t meet that
requirement. However, Lemma III.1 presented by Breitbart and
others [3] always needs bi-directional complete AFT entries. In
their implementation, they addressed this issue by modifying a
standard ping program in a way that allows their tool to submit
Internet control message protocol messages from a given
source address to a given destination address. This is overhead,
causing unnecessary heavy traffic in the network. Fourth, after
a topology change happens, the bridge must flush all AFT
entries. In this case, it is impossible to discover the topology in
Ethernet networks. Fifth, they cannot find the edges between
interfaces that are not active (that is, those eliminated by the
STP). Therefore, the topology obtained by the previous method
is not a complete physical graph but Layer-2 spanning tree
paths excluding multiple redundant paths.

To cope with these problems, in this paper we propose a
novel and practical algorithmic solution that can discover an
accurate physical topology in a metro Ethernet network. The
key idea of our algorithm is as follows: First, to divide metro
Ethernet networks into bridged networks and host networks to
eliminate the aging-out influence and to avoid the enormous
size of AFT entries in core bridges. The second idea is to use
STP bridge protocol data units (BPDUs) that are received on

356 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

inactive port states, such as for blocking and listening to
discover multiple redundant paths.

The major contribution of this paper is that we find a true
physical topology, not a tree, of metro Ethernet networks,
where loop structures are present.

III. Background

This section describes an algorithm that creates AFT entries
in Ethernet networks to aid in the understanding of our
algorithm. We also describe, at a high level, the operation of
STP to motivate our algorithm for discovering neighbor
bridges.

1. Creating AFT Entries

In Fig. 1, we show that an AFT entry is composed of a
MAC address, a receiving port number, and the aging time
indication with a default value of 300 seconds [12], [13]. If
the aging time is expired, the entry in the AFT is removed.

All data frames are forwarded only along active connections.
This is enforced by dropping those frames received via a
blocking or listening port state. If a host moves to another place,
then a bridge knows this fact through address learning.

Fig. 1. Flowchart for creating an AFT in a bridge.

Receive frame on port x

Read source address (SA)

Is SA present
in AFT?

Forward frame to looked-up
port number

Enter new SA age and
port x in AFT

Yes

No

2. Spanning Tree Protocol

The STP [13] is a Layer-2 link management protocol that
provides path redundancy while preventing undesirable loops
in a network. A spanning tree builds an ordered network from a
root bridge to designated bridges. The spanning tree algorithm
(STA) [13] can be viewed as constructing a spanning tree over
a graph of the network topology. Basically, the STA works as
follows: First, the bridges in the network elect one of their
members as a root bridge. Then, each bridge other than the root
bridge determines its distance (minimum path length in the

graph) to the root bridge and selects one of its ports, called the
root port, which is closest to the root bridge. Then, the bridges
elect one port on each segment, called the designated port,
which is closest to the LAN segment. Each Layer-2 interface
on a bridge using STP exists in one of these states: blocking,
listening, learning, forwarding, or disabled. Here, a disabled
port state means that the physical link connection is not present.
Any bridge can receive BPDUs in any port state excluding a
disabled state. Also, all port states can send BPDUs, excluding
the blocking and disabled state.

The STA is needed to place some of the physical links into a
blocked state until such time as a link fails and the backup
blocked link is placed in service (that is, frames can be forwarded
over it). The two key functions of the STA are 1) to find an active
topology without any loops, that is, a spanning tree, and 2) to
have a mechanism to discover failures around the network.

IV. Overview of Physical Topology Discovery Algorithm

Most Ethernet Networks have a mesh-type topology to offer
redundant networks because of cost effectiveness. For clarity,
we define the logical topology and physical topology concepts
in metro Ethernet networks. Physical network topology refers
to the characterization of the physical connectivity relationships
that exist among entities in a communication network. Logical
network topology represents the unique forwarding paths to be
decided by the STP. From the port state of view for each bridge
port in the network, the port state by the former means an
electrical active or inactive state, but the port state by the latter
has a metaphysical blocking, listening, learning or forwarding
state. The goal of our proposed algorithm was to find the
redundant physical paths in a metro Ethernet network. To
accomplish this goal, we chose to derive the physical network
topology using interface MIB [6] and bridge MIB [7]
information obtained from all bridges in the metro Ethernet
network by the SNMP manager. In this section, we describe
our physical topology discovery algorithm, which derives
locating edge bridges, designated bridges,3) and hosts. A key
concept in our topology discovery algorithm is to select the
edge bridges defined formally below.

Definition 1. Edge Bridge

An edge bridge is a bridge that contains at least an interface
connected to any hosts or any routers. In other words, it is an
ingress or egress bridge to or from bridged networks.

A metro Ethernet network containing the nodes N can be
divided into the set of all bridges B, the set of all edge bridges

3) These are neighbor bridges connected to a bridge.

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 357

Q, and the set of all hosts H. Intuitively, the set of all edge
bridges form the boundary between the bridged network and
the host network. With the metro Ethernet network split into
two sets, it is easier to find the physical topology as compared
with the previous approaches [3]-[5].

On the basis of definition 1, we can induce the following
property.

Property 1. Edge Bridge

It is impossible for the number of active ports on a bridge to
be less than the number of STP enabled ports.

Remark: If we subtract the number of STP enabled ports
from the number of active ports, the number of interfaces
connected to the hosts remains. We don’t need to run STP on
those interfaces because the interfaces are not connected to
bridged networks forming loops.

The first step in discovering a physical network’s topology is

to collect some SNMP MIB information, and the second step is
to apply our algorithm to them.

Figure 2 illustrates on example of a metro Ethernet network
and its active network composed of bridges B1, B2, and B3 and
hosts X, Y, and Z. In the metro Ethernet network, as shown in Fig.
2(a), three bridges create a loop. Three hosts transmit a data frame,
and then the AFT entries are created as in column 5 or column 7
in Table 1. There are multiple paths with source Y and destination
X in accordance with AFT entries in bridge B3. Specifically, there
are two paths from Y to X, Y-B3-B1-B2-X and Y-B3-B2-X.
Therefore the STP is needed in the metro Ethernet network to
decide on a single forwarding path. Figure 2(b) shows an Ethernet
active network without any loops, that is, a spanning tree (from
the mathematical discipline of graph theory), and the dotted line
indicates a link disabled by the STA. Thus, Y-B3-B1-B2-X is the
only forwarding path. The reason why this forwarding path is
chosen is for STA. The bridge number shown in Fig. 2 represents
the bridge priority, and the small number has high priority. That is,
bridge B1 has higher priority than bridge B2. Port 2 on bridge B3
has a blocking port state due to a lower priority, so data traffic isn’t
sent or received in this port state but the STP BPDU can be
received by it. The previous authors [3]-[5] can find the spanning
tree shown in Fig. 2(b) because they depend only on AFT entries.
However, with the algorithm described here we can discover both
mesh networks, as shown in Fig. 2(a), and active networks, as
shown in Fig. 2(b), as we use information obtained from both the
STP and the AFT.

Table 1 summarizes SNMP MIB information to apply our
physical topology discovery algorithm to Fig. 2 as an example.
The first column lists the devices equipped with an SNMP
agent and is mapped to dot1dBaseBridgeAddress in the bridge

Fig. 2. Example of an Ethernet mesh network vs. Ethernet active
network.

P1

P1

P3
P2 P2

P3

P2 B1

B2 B3

Hub

X

Y Z

P1

P1

P3
P2 P2

P3

P2 B1

B2 B3

Hub

X

Y Z

P1

P1

(a)

(b)

STP BPDU

Data frame

MIB [7]. The second column lists active ports in each bridge
and can be obtained from ifOperStatus with value 1 in the
interface MIB [6]. The third column lists STP enabled ports
and can be obtained from dot1dStpPortEnable in the bridge
MIB [7]. The fourth column lists a peer bridge and can be
obtained from dot1dStpPortDesignatedBridge in the bridge
MIB [7]. And finally, the fifth column lists AFT entries and can
be obtained from dot1dTpFdbAddress or dot1dStaticAddress
in the bridge MIB [7]. The AFT information is only used to
find host networks differently from previous works. The value
of the designated bridge between mesh networks and active
networks is different because of the STP mechanism addressed
in section III.2 [13]. However, a metro Ethernet network has an
undirected graph so the results of the two types of networks are
identical. Thus, we can discover the physical topology
regardless of the STP calculation. The SNMP MIB information
collected for physical topology discovery shown in Table 1 is
inserted into the database (DB) in the SNMP manager. If some
topology changes occur, the trap event is noted to the SNMP
manager. Therefore, the SNMP manager is able to maintain the
latest topology data in the DB.

358 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

Table 1. SNMP MIB for physical topology discovery.

Port Mesh network Active network
Bridge (agent)

OperUP EnableSTP DesignatedBridge AFT DesignatedBridge AFT

P1 P1 B2 X B1 X
B1

P2 P2 B3 YZ B1 YZ

P1 P1 B1 YZ B1 YZ

P2 P2 B3 YZ B2 null B2

P3 null null X null X

P1 P1 B1 X B1 X

P2 P2 B2 X B2 null B3

P3 null null YZ null YZ

In the next step we will explain our algorithm with Fig. 2 and

Table 1 to gain a better understanding of it. We can model the
metro Ethernet network as an undirected graph G=(V, E),
where each node in V represents a network element and each
edge in E represents a physical connection between two bridge
interfaces. Table 2 summarizes the key notations used
throughout the paper with a brief description of their semantics.
Additional notation will be introduced when necessary.

The first task faced by our algorithm is to find edge bridges in
metro Ethernet networks. It is easy to find edge bridges because
they have interfaces that are not running STP. Therefore, if a
bridge complies with lemma 1, it becomes an edge bridge. The
main reason for this procedure is to eliminate the aging-out
influence and avoid an enormous number of AFT entries in

Table 2. Notation.

Symbol Semantics

G = (V, E) The metro Ethernet network graph

bi Bridge bi ∈B={b1,b2,…,bN}

Di Set of designated bridges connected to bi. Di ⊂ D

Pi Set of active ports on bridge bi. Pi ⊂ P

Ti Set of STP enabled ports of bridge bi. Ti ⊂ T

Hi Set of AFT entries in edge bridge bi. Hi ⊂ H

Q Set of edge bridges

Hi,j
Set of hosts connected to j-th interface of edge
bridge bi

j
iH j-th element of Hi
j

iD j-th element of Di

e=(vi,vj) An edge is an element in the set of E

n(S) The number of elements in a set of S

the core bridges, such as in property 2, because only edge
bridges can request AFT entries.

Lemma 1. Edge Bridge Selection

Let bi be a bridge in metro Ethernet networks and Q be a set
of edge bridges. If n(Pi)>n(Ti), then bi∈Q.

Proof: Suppose, to the contrary, that bi is not an element of Q.
Then, the number of active ports on bridge bi should be equal
to the number of STP enabled ports on bridge bi. The case
where the number of active ports on a bridge is less than the
number of STP enabled ports violates property 1. �

Property 2. Calculation of Core Bridge’s AFT Size

The size of an AFT in a core bridge increases in proportion
to the number of active interfaces of the core bridge, and the
result is calculated from the following equation:

).()(' BridgeDesignatedsportactive
portactive

CoreBridge AFTnAFTn ∑=

Remark: The number of active ports is equal to the number
of total active interfaces in a core bridge.

We propose a physical topology discovery algorithm which

consists of four major stages. In stage I, we initialize four sets: a
set of edge bridges Q, a set of designated bridges , a set of
operational interfaces Bb , and a set of STP enabled interfaces

Bb . In stage II, we collect physical topology data such as P

BbD ∈

P∈

T ∈ i,
Ti, and Di from all agents. The main goal here is to minimize
the quantity of data collection and unnecessary overhead
instead of collecting all entities of interface MIB [6] and bridge
MIB [7]. Here, both getIFMIB and getSTPMIB are
metaphysical terminologies, and the return value of them is

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 359

part of interface MIB [6] and bridge MIB [7]. In stage III, we
select edge bridges based on definition 1, property 1, and
lemma 1. In stage IV, two sub-functions of
PhysicalTopologyDiscovery, FindBridgeGraph for the bridged
network and FindHostGraph for the host network, are called
up. The detailed steps of the physical topology discovery
algorithms are described as follows.

Fig. 3. Our physical topology discovery algorithm.

procedure PhysicalTopologyDiscovery(bridgeSet)
/* bridgeSet B={b1,b2,…,bN} */

begin
/* Stage I. Data initialization */
edgebridgeSet Q←φ
designatedbridgeSet Di ←φ
enableportSet Pi←φ
stpportSet Ti←φ
/* Stage II. Data collection */

 for each bridge bi∈B do {
 Pi←getIFMIB(bi)

Ti←getSTPMIB(bi)
Di←getSTPMIB(bi)

}
/* Stage III. Edge bridge selection */
for each bridge bi∈B do {

if(n(Pi) > n(Ti))
Q←Q∪ {bi}

}
/* Stage IV. Sub-procedures call */
FindBridgeGraph(B, D)
FindHostGraph(Q)

 end

To help understand our algorithm, we explain it with Fig. 2
as an example. The initial input data for our algorithm is the
collection of bridges B in the metro Ethernet network. We can
obtain the set of bridges B such as B={b1, b2, b3}. As a result of
stage II, we can obtain Pi and Ti as follows:

P1={p1, p2}, P2={p1, p2, p3}, and P3={p1, p2, p3}.

T1={p1, p2}, T 2={p1, p2}, and T 3={p1, p2}.

We can also obtain a set of designated bridges, Di, from stage
II with the following two conditions:

First, before spanning tree calculation (Mesh Physical
Network),

D1={(b1, b2), (b1, b3)}, D 2 ={(b2, b1), (b2, b3)}, and

D3={(b3, b1), (b3, b2)}.

Second, after spanning tree calculation (Tree Active
Network),

D1={(b1, b1), (b1, b1)}, D 2 ={(b2, b1), (b2, b2)}, and

D3={(b3, b1), (b3, b2)}.

Stage III selects the set of edge bridges Q={b2, b3}.
Therefore, the results of Fig. 3 are the set of agents B, the set of
designated bridges Di, and the set of edge bridges Q, and they
are used as input parameters for the FindBridgeGraph and
FindHostGraph procedures.

More specifically, these procedures are performed for
discovering some network graphs in the bridged and host
networks, respectively. We describe the network graph
discovery procedures in the following section.

V. Sub-procedures of Our Physical Topology
Discovery Algorithm

We present the FindBridgeGraph procedure to find a
physical topology in the bridged network and the
FindHostGraph procedure to discover a physical topology in
the host network.

1. The FindBridgeGraph Procedure

The main goal of this procedure is to discover a graph in the
bridged network. We had sufficient information to perform this
procedure through the PhysicalTopologyDiscovery procedure
shown in Fig. 3.

We first briefly describe how to find the set of bridges in the
metro Ethernet network. And we discover edges between
bridges with designated bridge information. Figure 4 gives the
pseudo-code based on property 3 to discover undirected graph
G=(V, E) in the bridged network regardless of calculating a
spanning tree. A bridged network is an undirected graph for
offering multiple redundant paths. We only need unidirectional
information by property 3. The number of sending neighbors
has been changed according to whether or not a spanning tree
was calculated. In the case where a spanning tree has been
calculated, a root bridge can start sending a BPDU; some
designated bridges which receive it can also send the BPDU to
other designated bridges. However, if before calculating a
spanning tree, for example, a topology change happens in the
network, all bridges have to start sending a BPDU. If a bridge
has a lot of interfaces for running the STP, it has the same
number of designated bridges as the number of STP-enabled
interfaces.

The main goal of this algorithm is to find the set of edges E
and the set of vertices V in bridged networks. This procedure
can find the set of edges by means of filtering duplication and
dummy information.

Property 3. Connection between Bridges

Let bi and bj be bridges in metro Ethernet networks, be k
jb

360 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

the k-th interface of a bridge bi and G=(V, E) be an undirected
graph. If has a designated bridge bk

ib j then bi is connected to
bj. If the designated bridge of is bk

ib i itself, then bi is not
connected to one of any other bridges including bj.

Remark: In an undirected graph, (bi, bj) is the same as (bj, bi).
And the k-th interface of bridge bi is an STP-enabled port.

It is simple to find a physical topology in bridged networks

because the designated bridge information is offered by a
standard SNMP MIB entity. Moreover, we can resolve the
problem with property 2 by using AFT entries.

In stage I, we initialize a vertex set V and an edge set E. In
stage II, we insert all elements in the bridge set into the
vertex set V. In stage III, we remove the designated bridge,
which is a bridge from the designated bridge set D

B

i, because of
applying the graph theory with the following condition: (bi, bi)

E. In stage IV, we can obtain edge set excluding the
following undirected graph condition: (b
∉ E

i, bj)≡(bj, bi). The
detailed steps of our algorithm are described as follows.

Fig. 4. The FindBridgeGraph procedure.

procedure FindBridgeGraph(B, D)
/* G=(V, E) */
 begin
 /* Stage I. Data initialization */

vertexSet V←Q
 edgeSet E←Q

/* Stage II. Vertex creation */
 V←V∪B

/* Stage III. Apply graph theory */
 for each designatedbridgeSet Di⊂D do {
 for each designatedbridge D

j
i∈Di do {

 if (bi= D
j
i)

 Di←Di―{D
j
i }

 }
}
/* Stage IV. Edge creation */
for each designatedbridgeSet Di ⊂D do {

 if(Di=φ)
 continue
 for each designatedbridge D

j
i ∈Di do {

/* (bi, D
j
i)≡(D

j
i, bi) ∵ undirected graph */

 E←E∪{(bi, D
j
i)}

 }
 }

end

We explain our algorithm with Fig. 2 as an example. Input

arguments of the FindBridgeGraph procedure are the set of
bridges B and the set of sets of designated bridges D. We can
obtain the input arguments as follows:

B={b1, b2, b3} and D={D1, D 2, D 3}.

The vertex set V can be obtained from stage II as follows:

V={b1, b2, b3}. We can find some sets of designated bridges
with the following two conditions:
First, before spanning tree calculation,

D1={(b1, b2), (b1, b3)}, D2={(b2, b1), (b2, b3)}, and
D3={(b3, b1), (b3, b2)}.

Second, after spanning tree calculation,
D1={}, D2={(b2, b1)}, and D3={(b3, b1), (b3, b2)}.

In stage IV, the set of edges E is as follows:
E={e1, e2, e3}={(b1, b2), (b3, b1), (b2, b3)}.

2. The FindHostGraph Procedure

The last step in physical topology discovery is to find hosts
connected to edge bridges. We use AFT entries in the edge
bridges for discovering some connectivity with hosts.

We put the following property 4 to decide on the link
connection type in the host networks. And we denote the j-th
interface of an edge bridge bi by and the MAC address of
host B’s interface by b, which is expressed in lowercase letters.

j
ib

Property 4. Connection between an Edge Bridge and Hosts

Let A, B, and C be hosts and bi be an edge bridge. If bi has A,
B, and C for the same interface j as the AFT entries, then is
connected to interfaces of A, B, and C through a hub. Thus, we
can find the following properties:

j
ib

First, if (n(Hi,j)>1), then the edge bridge bi is connected to
hosts with the number of n(Hi,j)in the shared segments.

Second, if (n(Hi,j)=1), then the edge bridge bi is connected to
only one host. That is, the connection between the edge bridge
and the host is a point-to-point link.

Third, if (n(Hi,j)=0), then the edge bridge bi is not connected
to any hosts

Remark: Here, Hi,j ={a, b, c} and is an active interface
not running STP.

j
ib

The FindHostGraph procedure, as shown in Fig. 5, has the

set of edge bridges as an input parameter. The getAFTMIB is a
metaphysical terminology and carries AFT entries from all
edge bridges. To minimize the influence of the size of AFT as
property 2, an SNMP manager gets AFT entries from only
edge bridges and the information is available for finding host
connectivity. Hosts are connected to edge bridges through a
hub or direct link as in property 4. We can obtain edge set E
after running the following procedure.

In stage I, we initialize vertex set V, edge set E, and host
set . In stage II, to obtain vertex set V, we need to know
AFT entries from BridgeMIB [7] and we can create the vertex
set V as V=Q∪H

j
iH

i,j. In stage III, we can decide whether an edge
bridge is connected to a host through a point to point link

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 361

or whether it is connected to more than two hosts through a
hub. That is, edge set E becomes the union of the shared edge
set Es and the point to point edge set EP. The detailed steps of
our algorithm are described as follows.

Fig. 5. The FindHostGraph procedure.

procedure FindHostGraph (Q)
/* G=(V, E) */
begin

/* Stage I. Data initialization */
 vertexSet V←φ
 edgeSet E←φ
 hostSet H

j
i ←φ

/* Stage II. Vertex creation */
 V←V∪Q

 for each edgebridge bi∈Q do {
getAFTMIB(bi)
Hi,j←findAFTMIB(b

j
i)

 V←V∪Hi,j
 }

/* Stage III. Edge creation */
for each edgebridge bi∈Q do {

 if (n(Hi,j)≥2) {
for each host H

j
i ∈Hi,j do {

Es←Es∪{(bi, H
j
i)}

 }
 }
 else{

for each host H
j
i ∈Hi,j do {

EP←EP∪{(bi, H
j
i)}

 }
 }
 E=Es∪EP
 }
end

We explain our algorithm with Fig. 2 as an example. An
input argument of the FindHostGraph procedure is the set of
edge bridges Q. We can obtain the input argument as Q={b2, b3}.
We can obtain the vertex set V from stage II as V=Q∪H2,3
∪H3,3={b2, b3, X, Y, Z}. Here, H2,3={X} and H3,3={Y, Z}. Stage
III finds the subset of edge set E by applying property 4 as
ES={(b3, Y), (b3, Z)} and EP={(b2, X)}. Therefore, we can
obtain the set of edges as E={e1, e2, e3}={(b3, Y), (b3, Z), (b2, X)}.

VI. Experiments

1. Implementation

The basic component processing management functionalities
[14] are management application, remote method invocation
(RMI) server, and SNMP manager. The algorithm has been
implemented in the management application, that is, a graphical
user interface (GUI), and was tested on a variety of networks.
Figure 6 depicts a high-level view of our implementation

architecture.
The management application requests a part of the interface

MIB [6] and the bridge MIB [7] to the SNMP manager
through the RMI Server. The SNMP manager can submit a
query message to all SNMP agents, that is, all bridges. After
receiving the interface MIB [6] and the bridge MIB [7] from all
SNMP agents, the SNMP manager inserts them into the DB
with the following schema: dot1dPTDIfBasicEntry,
dot1dPTDBaseInfo, dot1dPTDStp, dot1dPTDStpPortEntry,
dot1dPTDTpFdbEntry, and dot1dPTDStaticEntry expressed in
Tables 3 through 8. Then, the SNMP manager notifies the fact
to the management application. The management application
can fetch the physical topology information from the DB and
carry out our topology discovery algorithm; it then shows the
results via a GUI.

Fig. 6. Implementation architecture.

Management
application

bridge N

RMI
server

SNMP
manager

DB
Linux system

SNMP
agent

bridge 2

SNMP
agent

bridge 1

SNMP
agent

We implemented the management application on Windows
XP using Java language and the SNMP manager on Linux OS
using C plus language. The RMI Server which interfaces the
management application to the SNMP manager is
implemented on Linux OS using Java language.

Tables 3 through 6 show the data used for deciding on the set
of edge bridges Q and for discovering the bridges’ connections
in the bridged network. Tables 7 and 8 show the data used for
discovering connections between edge bridges and hosts in the
host network. Table 7 is taken from the address learning
function and Table 8 is taken by management.

Figure 7 depicts the representative test network for
discovering physical topology in the metro Ethernet network. It

Table 3. Schema of dot1dPTDIfBasicEntry.

Name Syntax OID

agent_ip String

ifOperStatus Integer 1.3.6.1.2.1.2.2.1.8

362 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

Table 4. Schema of dot1dPTDBaseInfo.

Name Syntax OID

agent_ip String

dot1BaseBridgeAddress String 1.3.6.1.2.1.17.1.1

Table 5. Schema of dot1dPTDStp.

Name Syntax OID

agent_ip String

dot1dStpPriority Integer 1.3.6.1.2.1.17.2.2

dot1dStpRootPort Integer 1.3.6.1.2.1.17.2.7

Table 6. Schema of dot1dPTDStpPortEntry.

Name Syntax OID

agent_ip String

dot1dStpPort Integer 1.3.6.1.2.1.17.2.15.1.1

dot1dStpPortState Enumerated 1.3.6.1.2.1.17.2.15.1.3

dot1dStpPortEnable Enumerated 1.3.6.1.2.1.17.2.15.1.4
dot1dStpPortDesignated
Bridge String 1.3.6.1.2.1.17.2.15.1.8

Table 7. Schema of dot1dPTDTpFdbEntry.

Name Syntax OID

agent_ip String

dot1dTpFdbAddress String 1.3.6.1.2.1.17.4.3.1.1

dot1dTpFdbPort Integer 1.3.6.1.2.1.17.4.3.1.2

dot1dTpFdbStatus Enumerated 1.3.6.1.2.1.17.4.3.1.3

Table 8. Schema of dot1dPTDStaticEntry.

Name Syntax OID

agent_ip String

dot1dStaticAddress String 1.3.6.1.2.1.17.5.1.1.1

dot1dStaticReceivePort Integer 1.3.6.1.2.1.17.5.1.1.2

is composed of twelve bridges and one hundred ninety three
hosts. The bridge number shown in Fig. 7 represents the bridge

priority; a small number has high priority. We used various
products such as Cisco’s Catalyst3550 [15], Riverstone’s
RS1000 and RS3000 [16], and Paxcomm’s NDX2104 and
NGX2104 [17] to demonstrate interoperability.

2. Results

A primary goal of the experimental study with our physical
topology discovery tool is to correctly determine a physical
topology including many links eliminated by STP. We found a
graph with multiple inactive paths for the metro Ethernet
network as well as a spanning tree, which related works also
had found. A second goal of our experimental study is to verify
the practicality of our physical topology discovery algorithm
by measuring its calculation time requirements for various
network sizes. We tested the relationship between the number
of bridges and physical topology discovery calculation time
and the relationship between the number of hosts and physical
topology discovery calculation time.

Although the accuracy of the physical topology is the most
important criterion when judging the performance of this
algorithm, its time performance may also be important in
some applications. The majority of the execution time is spent
obtaining the interface MIB [16] and bridge MIB [7] from the
bridges. The execution time depends principally on the
communication delay due to the slow speed of SNMP. To
minimize this influence, our algorithm separated the data
calculation function from the data collection procedure. Due
to backup physical topology data in our DB, we can discover a
physical topology at any time without decreasing performance.
The performances of previous approaches [3]-[5] decreased
significantly in proportion to the number of hosts due to the
size of the AFT, as we addressed in section IV. However, our
physical topology discovery algorithm is not seriously affected
by the number of hosts because we divided the metro Ethernet
network into a bridged network and host networks, and for the
bridged networks our algorithm does not need AFT entries. It
took below one second to calculate our physical topology
discovery under the environment of less than 5000 hosts and
100 bridges. Therefore, our algorithm is a very precise
solution to discover a physical topology for metro Ethernet
networks.

For rapid convergence, RSTP became the IEEE 802.1w [8]
standard in 2001. And for supporting multiple trees in VLAN
environments, MSTP became the IEEE P802.1s/D15 [9]
standard at the end of 2002. However, further work is required
to standardize MIBs for RSTP and MSTP. The standard MIB
for RSTP is now being processed in an IEEE draft [12] and the
MSTP MIB is ready to be proposed in an IEEE draft. When
the RSTP MIB is implemented, we don’t need to get the

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 363

Fig. 7. Test network for discovering a physical topology.

1Gbps
100 Mbps

NDX 2104-2 NDX 2104-3

NDX 2104-1

NGX 2104

RS1000

Catalyst 3550

RS 3000NDX 2104-4 NDX 2104-5

NDX 2104-6

NDX 2104-8NDX 2104-7

10 hosts

1

1

1

1

11

1
1

1

2

3
4

5

6

2

2

2
2

2

2

2
2

2

2

1

3

3

3

3

3

3 3

3

4

4

4 3

4

4

4

5

5

10

5

B1

B2 B3

B4
B5B6

B7

B10

B8

B9

B12 B11

5
6

10 hosts
10 hosts

10 hosts
10 hosts

10 hosts

5
6 7 8 9

1
4 5 6 7 8 9 10

11

10 hosts
10 hosts

10 hosts

10 hosts

10 hosts
10 hosts

10 hosts

10 hosts
10 hosts

10 hosts

10 hosts

10 hosts

7
6

4
3

2
14131211

10 9 8 7
1

Fig. 8. Network manager’s user interface.

interface MIB to decide on the edge bridges because the edge
port in the RSTP MIB may be used instead of the number of
active ports. Moreover, if we could get an MSTP MIB in a
bridged network, we would be able to discover multiple logical
VLAN paths. We hope to be able to implement this research in
the near future.

Our algorithm found an exactly complete physical topology
including inactive interfaces eliminated by the STP in metro

Ethernet networks. Figure 8 shows an example of our network
manager’s user interface when connected to the twelve bridges
depicted in Fig. 7. Figure 9(a) shows the results of a physical
topology for our test network in our ETRI laboratory. In Fig.
9(a), the RS1000 is a root bridge and the blue colored four
bridges are edge bridges. When we click these edge bridges we
can know the physical topology in the host network depicted in
Fig. 9(b). Figure 9(b) shows the results of a host network
connected to an edge bridge, NDX2104-8. Ports 1, 7, 8, 9, 10,
11, 12, 13, and 14 are connected to the edge bridge NDX2104-
8 through a hub, and ports 2, 3, and 4 are directly connected to
the edge bridge NDX2104-8.

Although the correctness of the topology is the most
important criterion when judging the performance of this
algorithm, its execution time performance may also be
important in some applications. The majority of the execution
time is spent fetching the interface MIB and bridge MIB
information from the bridges. This is partially due to the slow
speed of SNMP, but most significantly due to a desire not to
swamp the bridges with queries. However, the topology of
metro Ethernet networks changes rather slowly. To minimize
this overhead, we isolated the topology calculation procedure
from the MIB data fetch procedure.

Figures 10 and 11 show the performance of the physical

364 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

Fig. 9. Result of our physical topology discovery.

(a) Bridged network topology

(b) Host network topology

Fig. 10. The performance of the time to calculate a topology with
varying numbers of hosts and fewer than 12 bridges.

1

10

100

1000

500 750 1000 1250 1500 1750 20002500 3000 3500 4000 45005000

Number of hosts

Ti
m

e
(m

s)

topology discovery algorithm running on a 2.20 GHz
Pentium IV. The number of hosts and bridges were varied by
adding the entries for hosts or bridges from a previously
collected DB.

Fig. 11. The performance of the time to calculate a topology with
varying numbers of bridges and fewer than 5000 hosts.

1

10

100

1000

20 30 40 50 60

Number of bridges

Ti
m

e
(m

s)

VII. Conclusions

Automatic discovery of physical topology plays a crucial
role in enhancing the manageability of modern metro Ethernet
networks. Despite the importance of the problem, earlier
research and commercial network management tools have
typically concentrated on either i) discovering logical (that is,
Layer-3) topology, which implies that the connectivity of all
Layer-2 elements is ignored, or ii) proprietary solutions
targeting specific product families. In this paper, we have
proposed a novel and practical algorithm for discovering the
physical topology in a metro Ethernet network. The common
problem of the recent work by other researchers is that their
algorithms can only discover spanning tree paths and not the
complete physical topology of a metro Ethernet network. They
also had a serious performance reducing problem because their
algorithm depended on AFT entries only. To our knowledge,
our algorithm is the only solution that can find the exact
physical topology in a metro Ethernet network. It took below
one second to calculate our physical topology discovery in
conditions of fewer than 5000 hosts and fewer than 100 bridges.
As metro Ethernet network technology develops, we will
continue to study topology discovery exploiting RSTP and
MSTP as they mature to overcome the limitations of STP.

References

[1] Ralph Santitoro, “Metro Ethernet Services-A Technical
Overview,” In the Metro Ethernet Forum 2003, http://www.
metroethernetforum.org.

[2] A. Bierman and K. Jones, Physical Topology MIB, Sept. 2000,
Internet RFC-2922, http://www.ietf.org/rfc/.

[3] Yuri Breibart, Minos Garofalakis, Cliff Martin, Rajeev Rastogi, S.
Seshadri, and Avi Silberschatz, “Topology Discovery in
Heterogeneous IP Networks,” IEEE INFOCOM 2000, Tel Aviv,

ETRI Journal, Volume 27, Number 4, August 2005 Myung-Hee Son et al. 365

Israel, Mar. 2000, pp. 265-274.
[4] Bruce Lowekamp, David R. O’Hallaron, and Thomas R. Gross,

“Topology Discovery for Large Ethernet Networks,” ACM
SIGCOMM 2001, San Diego, California, USA, Aug. 2001, pp.
237-248.

[5] Yigal Bejerano, Yuri Breitbart, Minos Garofalakis, and Rajeev
Rastogi, “Physical Topology Discovery for Large Multi-Subnet
Networks,” IEEE INFOCOM 2003, San Francisco, USA, Apr.
2003, pp. 342-352.

[6] K. McCloghrie and F. Kastenholz, The Interface Group MIB, June
2000, Internet RFC-2863, http://www.ietf.org/rfc/.

[7] RFC-1493, Definitions of Managed Objects for Bridges, IETF, E.
Decker and P. Langille, July 1993, http://www.ietf.org/rfc/.

[8] IEEE Std 802.1w, Amendment to IEEE Std 802.1D, 1998 Edition
(ISO/IEC 15802-3:1998) and IEEE Std 802.1t-2001, Part 3:
Media Access Control (MAC) Bridges-Amendment2: Rapid
Reconfiguration, IEEE, 2001.

[9] IEEE P802.1s/D15, Draft Standard for Local and Metropolitan
Area Networks-Amendment 3 to 802.1Q Virtual Bridged Local
Area Networks: Multiple Spanning Trees, Amendment to IEEE
Std 802.1Q-1999, IEEE, 2002.

[10] M. J. Choi, “XML-Based Network Management for IP
Networks,” ETRI J., vol. 25, no. 6, Dec. 2003, pp.445-463.

[11] William Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2,
Third Edition, Addison-Wesley.

[12] Robert Breyer and Sean Riley, Switched, Fast, and Gigabit
Ethernet, Third Edition, Macmillan Technical Publishing.

[13] ANSI/IEEE Std 802.1D, Part 3: Media Access Control (MAC)
Bridges, IEEE, ISO/IEC 15802-3:1998, 1998.

[14] W. K. Hong, “An ATM Network Management System for Point-
to-Multipoint Reservation Service,” ETRI J., vol. 24, no. 4, Aug.
2002, pp.299-310.

[15] Corporate Headquarters, “Catalyst 3550 Multilayer Switch
Software Configuration Guide,” March 2003, Cisco IOS Release
12.1(13)EA1, http://www.cisco.com.

[16] Riverstone Networks, “RS Switch Router User Guide-Release
9.1,” http://www.riverstonenet.com.

[17] PaxComm, NetSteer NDX-2124 User Guide - Real Ethernet
Switching Layer 2, Ver. 2.62, http://www.paxcomm.com.

[18] V. Ngai and E. Bell, Definitions of Managed Objects for Bridges
with Rapid Spanning Tree Protocol, March 2004, draft-ietf-
bridge-rstpmib-04.txt, http://www.ietf.org/internet-drafts/.

Myung-Hee Son has been an Engineer Staff
Member of Electronics and
Telecommunications Research Institute (ETRI)
since March 2000. She received the BS degree
in aerospace engineering from Chungnam
National University in 1998 and the MS degree
in computer engineering from Chungnam

National University in 2000. And she received the PhD degree at the
Department of Information and Communications Engineering of
Chungnam National University, Korea. Her current research interests
include network protocols, mobile RFID technology and analysis, and
the study of mobile communications in sensor networks.

Bheom-Soon Joo received the BS degree in
electronic engineering from Seoul National
University, Korea, in 1983 and the MS degree
in electronic engineering from Korea Advanced
Institute of Science and Technology (KAIST),
Korea, in 1999. He has worked with ETRI from
1984. Currently, he is a Principal Engineer and

Team Leader at the Ethernet Technology team in ETRI. His research
interests span the fields of hardware development for Ethernet switch
systems, hardware development of ATM switch systems, network
synchronization, and high speed interconnection.

Byung-Chul Kim received the BS degree in
electronic engineering from Seoul National
University and the MS and PhD degrees in
electronic engineering from KAIST, Korea, in
1988, 1990, and 1996. Since 1999, he has been
a Professor at the Department of Information
and Communications Engineering of

Chungnam National University, Korea. Also, from 1993 to 1999, he
worked as a Research Engineer at Samsung Electronics. His research
interests include computer networks, wireless internet, sensor networks,
and mobile communications.

Jae-Yong Lee received the BS degree in
electronic engineering from Seoul National
University and the MS and PhD degrees in
electronic engineering from KAIST, Korea, in
1988, 1990, and 1995. Since 1995, he has been
a Professor at the Department of Information
and Communication Engineering of Chungnam

National University, Korea. Also, from 1990 to 1995, he worked as a
Research Engineer at Digicom Institute of Information and
Communications. His research interests include computer networks,
Internet protocols, traffic control, performance analysis, and wireless
Internet.

366 Myung-Hee Son et al. ETRI Journal, Volume 27, Number 4, August 2005

