
Physical Topology Discovery for  

Automatic discovery of physical topology plays a crucial 
role in enhancing the manageability of modern metro 
Ethernet networks. Despite the importance of the problem, 
earlier research and commercial network management 
tools have typically concentrated on either discovering 
logical topology, or proprietary solutions targeting specific 
product families. Recent works have demonstrated that 
network topology can be determined using the standard 
simple network management protocol (SNMP) 
management information base (MIB), but these 
algorithms depend on address forwarding table (AFT) 
entries and can find only spanning tree paths in an 
Ethernet mesh network. A previous work by Breibart et al. 
requires that AFT entries be complete; however, that can 
be a risky assumption in a realistic Ethernet mesh 
network. In this paper, we have proposed a new physical 
topology discovery algorithm which works without 
complete knowledge of AFT entries. Our algorithm can 
discover a complete physical topology including inactive 
interfaces eliminated by the spanning tree protocol in 
metro Ethernet networks. The effectiveness of the 
algorithm is demonstrated by implementation. 
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I. Introduction 

Metro Ethernet Networks 

Myung-Hee Son, Bheom-Soon Joo, Byung-Chul Kim, and Jae-Yong Lee 

Metro Ethernet services [1] are now offered by a wide range 
of service providers. Some providers have extended Ethernet 
services beyond a metropolitan area network (MAN) and wide 
area network (WAN). Thousands of subscribers already use 
Ethernet services and their numbers are growing rapidly. These 
subscribers have been attracted by the benefits of Ethernet 
services, including ease of use, cost effectiveness, and 
flexibility. Now the usage of Ethernets has widened from the 
LAN environment to MAN and WAN environments.  

For a metro Ethernet network, existing technologies for data 
transport have scalability limitations relating to bandwidth and 
network management. Actually, most system operators do not 
manage Ethernet devices because it is not critical in the LAN 
environment. However, in the metro Ethernet network 
environment, that approach will not work and a new 
management capability will be required. In spite of the 
importance of the problem, earlier research and commercial 
network management tools have typically concentrated on 
discovering a logical (that is, Layer-3) topology, which implies 
that the connectivity of all Layer-2 devices is ignored, or have 
provided limited proprietary solutions targeting specific 
product families. The Internet Engineering Task Force (IETF) 
has acknowledged the importance of this issue by designating a 
“physical topology” simple network management protocol 
(SNMP) management information base (MIB) [2], but the 
proposal merely reserves a portion of the MIB space without 
defining any protocol or algorithm for obtaining the topology 
information. Moreover, recent works relating to physical 
topology discovery in an Ethernet network [3]-[5] have a 
serious common problem which prevents discovery of the 
complete physical topology. Their physical topology discovery 
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was limited to spanning tree paths, which is described in 
section II. 

We explain where a physical topology discovery can be used, 
for example in capacity provisioning, planning, and 
management of the growth of a network; in support of 
configuration management for service provisioning; and finally 
in support of assurance, for example fault localization and 
performance management. 

For discovering the physical topology including multiple 
redundant paths in a metro Ethernet network, we suggested a 
novel and practical algorithm which can perform automatic 
discovery while minimizing the overhead of processing an 
enormous number of Layer-2 address forwarding table (AFT) 
entries in core bridges. Our algorithm uses the standard 
interface MIB [6] and bridge MIB [7], and we can discover the 
physical topology whenever it is needed. 

We begin by describing related work and our contribution. 
Section III reviews necessary background information. 
Sections IV and V describe our physical topology discovery 
algorithm, which derives locating edge bridges,1) neighbor 
bridges, and hosts using the spanning tree protocol (STP) 
information and the Layer-2 AFT entries. In section VI, we 
present our experiments including implementation and test 
results and discuss how our solution can be extended to deal 
with rapid STP (RSTP) [8] and multiple STP (MSTP) [9]. 
Finally, section VII concludes the paper. 

II. Related Works and Our Contributions 

As the trend of moving from Layer-3 communications to 
Layer-2 communications has developed, many vendors have 
developed proprietary tools and protocols for discovering 
physical network connectivity in an Ethernet network. Hitherto, 
SNMP-based algorithms for automatically discovering Layer-3 
topology are featured in many common network management 
tools, such as HP’s OpenView (www.openview.hp.com) and 
IBM’s Tivoli (www.tivoli.com). XML-based algorithms for IP 
networks [10] are also available; however, these cannot 
discover Layer-2 topology. In a recent work related to topology 
discovery for metro Ethernet networks, Breibart and others [3] 
proposed an algorithm that relies solely on standard AFT 
information collected in SNMP MIBs to discover the physical 
topology of heterogeneous networks comprising bridges 
organized in multiple subnets. Unfortunately, the algorithm 
assumes that complete AFT information is available from all 
nodes in the underlying network and thus, cannot cope with 
hubs or uncooperative switches.2) In a follow-up paper, 
                                                               

1) To be connected to some hosts or routers. 
2) The terms “switch” and “bridge” can be used interchangeably; we will primarily use 

“bridge” in the remainder of this paper. 

Lowekamp and others [4] suggested techniques for inferring 
network-element connectivity using incomplete AFT 
information and also discussed how to handle dumb, 
uncooperative elements. Bejerano and others [5] proposed a 
more advanced algorithm using a skeleton path for discovering 
physical topology in large multi-subnet networks. A common 
feature of those previous works [3]-[5] is that they only use 
AFT entries. So, they can only find spanning tree paths and 
exclude multiple redundant paths. Even though their 
techniques are said to discover the physical topology of 
Ethernet networks, they have the limitations of discovering 
only Layer-2 spanning tree paths. 

The practicality of our algorithm stems from the fact that it 
depends solely on standard information routinely collected in 
the SNMP MIB [11] of bridges, and it requires no 
modifications to the operating system software running on 
bridges or hosts. The three previous works [3]-[5] also have the 
same advantage as above. However these previous works have 
lots of problems: First, AFT entries typically employ an aging 
mechanism to evict infrequent source media access control 
(MAC) addresses from the AFT. In the case of aging-out, 
topology discovery is not feasible. Second, in the metro 
Ethernet networks, the size of the AFT ranges from tens of 
Kbytes to scores of Mbytes. Moreover, most core bridges 
might have hundreds of Mbytes. It will take up to a very long 
time to obtain all AFT entries through SNMP and will be 
difficult to obtain complete information. Third, all data traffic 
must be bi-directional, but real data traffic doesn’t meet that 
requirement. However, Lemma III.1 presented by Breitbart and 
others [3] always needs bi-directional complete AFT entries. In 
their implementation, they addressed this issue by modifying a 
standard ping program in a way that allows their tool to submit 
Internet control message protocol messages from a given 
source address to a given destination address. This is overhead, 
causing unnecessary heavy traffic in the network. Fourth, after 
a topology change happens, the bridge must flush all AFT 
entries. In this case, it is impossible to discover the topology in 
Ethernet networks. Fifth, they cannot find the edges between 
interfaces that are not active (that is, those eliminated by the 
STP). Therefore, the topology obtained by the previous method 
is not a complete physical graph but Layer-2 spanning tree 
paths excluding multiple redundant paths. 

To cope with these problems, in this paper we propose a 
novel and practical algorithmic solution that can discover an 
accurate physical topology in a metro Ethernet network. The 
key idea of our algorithm is as follows: First, to divide metro 
Ethernet networks into bridged networks and host networks to 
eliminate the aging-out influence and to avoid the enormous 
size of AFT entries in core bridges. The second idea is to use 
STP bridge protocol data units (BPDUs) that are received on 
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inactive port states, such as for blocking and listening to 
discover multiple redundant paths. 

The major contribution of this paper is that we find a true 
physical topology, not a tree, of metro Ethernet networks, 
where loop structures are present. 

III. Background 

This section describes an algorithm that creates AFT entries 
in Ethernet networks to aid in the understanding of our 
algorithm. We also describe, at a high level, the operation of 
STP to motivate our algorithm for discovering neighbor 
bridges. 

1. Creating AFT Entries 

In Fig. 1, we show that an AFT entry is composed of a 
MAC address, a receiving port number, and the aging time 
indication with a default value of 300 seconds [12], [13]. If 
the aging time is expired, the entry in the AFT is removed.  

All data frames are forwarded only along active connections. 
This is enforced by dropping those frames received via a 
blocking or listening port state. If a host moves to another place, 
then a bridge knows this fact through address learning. 

 
 

Fig. 1. Flowchart for creating an AFT in a bridge. 
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2. Spanning Tree Protocol 

The STP [13] is a Layer-2 link management protocol that 
provides path redundancy while preventing undesirable loops 
in a network. A spanning tree builds an ordered network from a 
root bridge to designated bridges. The spanning tree algorithm 
(STA) [13] can be viewed as constructing a spanning tree over 
a graph of the network topology. Basically, the STA works as 
follows: First, the bridges in the network elect one of their 
members as a root bridge. Then, each bridge other than the root 
bridge determines its distance (minimum path length in the 

graph) to the root bridge and selects one of its ports, called the 
root port, which is closest to the root bridge. Then, the bridges 
elect one port on each segment, called the designated port, 
which is closest to the LAN segment. Each Layer-2 interface 
on a bridge using STP exists in one of these states: blocking, 
listening, learning, forwarding, or disabled. Here, a disabled 
port state means that the physical link connection is not present. 
Any bridge can receive BPDUs in any port state excluding a 
disabled state. Also, all port states can send BPDUs, excluding 
the blocking and disabled state. 

The STA is needed to place some of the physical links into a 
blocked state until such time as a link fails and the backup 
blocked link is placed in service (that is, frames can be forwarded 
over it). The two key functions of the STA are 1) to find an active 
topology without any loops, that is, a spanning tree, and 2) to 
have a mechanism to discover failures around the network. 

IV. Overview of Physical Topology Discovery Algorithm 

Most Ethernet Networks have a mesh-type topology to offer 
redundant networks because of cost effectiveness. For clarity, 
we define the logical topology and physical topology concepts 
in metro Ethernet networks. Physical network topology refers 
to the characterization of the physical connectivity relationships 
that exist among entities in a communication network. Logical 
network topology represents the unique forwarding paths to be 
decided by the STP. From the port state of view for each bridge 
port in the network, the port state by the former means an 
electrical active or inactive state, but the port state by the latter 
has a metaphysical blocking, listening, learning or forwarding 
state. The goal of our proposed algorithm was to find the 
redundant physical paths in a metro Ethernet network. To 
accomplish this goal, we chose to derive the physical network 
topology using interface MIB [6] and bridge MIB [7] 
information obtained from all bridges in the metro Ethernet 
network by the SNMP manager. In this section, we describe 
our physical topology discovery algorithm, which derives 
locating edge bridges, designated bridges,3) and hosts. A key 
concept in our topology discovery algorithm is to select the 
edge bridges defined formally below. 

Definition 1. Edge Bridge 

An edge bridge is a bridge that contains at least an interface 
connected to any hosts or any routers. In other words, it is an 
ingress or egress bridge to or from bridged networks. 

A metro Ethernet network containing the nodes N can be 
divided into the set of all bridges B, the set of all edge bridges 
                                                               

3) These are neighbor bridges connected to a bridge. 
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Q, and the set of all hosts H. Intuitively, the set of all edge 
bridges form the boundary between the bridged network and 
the host network. With the metro Ethernet network split into 
two sets, it is easier to find the physical topology as compared 
with the previous approaches [3]-[5]. 

On the basis of definition 1, we can induce the following 
property. 

Property 1. Edge Bridge 

It is impossible for the number of active ports on a bridge to 
be less than the number of STP enabled ports. 

Remark: If we subtract the number of STP enabled ports 
from the number of active ports, the number of interfaces 
connected to the hosts remains. We don’t need to run STP on 
those interfaces because the interfaces are not connected to 
bridged networks forming loops. 

 
The first step in discovering a physical network’s topology is 

to collect some SNMP MIB information, and the second step is 
to apply our algorithm to them. 

Figure 2 illustrates on example of a metro Ethernet network 
and its active network composed of bridges B1, B2, and B3 and 
hosts X, Y, and Z. In the metro Ethernet network, as shown in Fig. 
2(a), three bridges create a loop. Three hosts transmit a data frame, 
and then the AFT entries are created as in column 5 or column 7 
in Table 1. There are multiple paths with source Y and destination 
X in accordance with AFT entries in bridge B3. Specifically, there 
are two paths from Y to X, Y-B3-B1-B2-X and Y-B3-B2-X. 
Therefore the STP is needed in the metro Ethernet network to 
decide on a single forwarding path. Figure 2(b) shows an Ethernet 
active network without any loops, that is, a spanning tree (from 
the mathematical discipline of graph theory), and the dotted line 
indicates a link disabled by the STA. Thus, Y-B3-B1-B2-X is the 
only forwarding path. The reason why this forwarding path is 
chosen is for STA. The bridge number shown in Fig. 2 represents 
the bridge priority, and the small number has high priority. That is, 
bridge B1 has higher priority than bridge B2. Port 2 on bridge B3 
has a blocking port state due to a lower priority, so data traffic isn’t 
sent or received in this port state but the STP BPDU can be 
received by it. The previous authors [3]-[5] can find the spanning 
tree shown in Fig. 2(b) because they depend only on AFT entries. 
However, with the algorithm described here we can discover both 
mesh networks, as shown in Fig. 2(a), and active networks, as 
shown in Fig. 2(b), as we use information obtained from both the 
STP and the AFT. 

Table 1 summarizes SNMP MIB information to apply our 
physical topology discovery algorithm to Fig. 2 as an example. 
The first column lists the devices equipped with an SNMP 
agent and is mapped to dot1dBaseBridgeAddress in the bridge  

 

Fig. 2. Example of an Ethernet mesh network vs. Ethernet active 
network.
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MIB [7]. The second column lists active ports in each bridge 
and can be obtained from ifOperStatus with value 1 in the 
interface MIB [6]. The third column lists STP enabled ports 
and can be obtained from dot1dStpPortEnable in the bridge 
MIB [7]. The fourth column lists a peer bridge and can be 
obtained from dot1dStpPortDesignatedBridge in the bridge 
MIB [7]. And finally, the fifth column lists AFT entries and can 
be obtained from dot1dTpFdbAddress or dot1dStaticAddress 
in the bridge MIB [7]. The AFT information is only used to 
find host networks differently from previous works. The value 
of the designated bridge between mesh networks and active 
networks is different because of the STP mechanism addressed 
in section III.2 [13]. However, a metro Ethernet network has an 
undirected graph so the results of the two types of networks are 
identical. Thus, we can discover the physical topology 
regardless of the STP calculation. The SNMP MIB information 
collected for physical topology discovery shown in Table 1 is 
inserted into the database (DB) in the SNMP manager. If some 
topology changes occur, the trap event is noted to the SNMP 
manager. Therefore, the SNMP manager is able to maintain the 
latest topology data in the DB. 
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Table 1. SNMP MIB for physical topology discovery. 

Port Mesh network Active network 
Bridge (agent) 

OperUP EnableSTP DesignatedBridge AFT DesignatedBridge AFT 

P1 P1 B2 X B1 X 
B1 

P2 P2 B3 YZ B1 YZ 

P1 P1 B1 YZ B1 YZ 

P2 P2 B3 YZ B2 null B2 

P3 null null X null X 

P1 P1 B1 X B1 X 

P2 P2 B2 X B2 null B3 

P3 null null YZ null YZ 

 

 
In the next step we will explain our algorithm with Fig. 2 and 

Table 1 to gain a better understanding of it. We can model the 
metro Ethernet network as an undirected graph G=(V, E), 
where each node in V represents a network element and each 
edge in E represents a physical connection between two bridge 
interfaces. Table 2 summarizes the key notations used 
throughout the paper with a brief description of their semantics. 
Additional notation will be introduced when necessary. 

The first task faced by our algorithm is to find edge bridges in 
metro Ethernet networks. It is easy to find edge bridges because 
they have interfaces that are not running STP. Therefore, if a 
bridge complies with lemma 1, it becomes an edge bridge. The 
main reason for this procedure is to eliminate the aging-out 
influence and avoid an enormous number of AFT entries in 
 

Table 2. Notation. 

Symbol Semantics 

G = (V, E) The metro Ethernet network graph 

bi Bridge bi ∈B={b1,b2,…,bN} 

Di Set of designated bridges connected to bi.  Di ⊂ D 

Pi Set of active ports on bridge bi.  Pi ⊂ P 

Ti Set of STP enabled ports of bridge bi.  Ti ⊂ T 

Hi Set of AFT entries in edge bridge bi.  Hi ⊂ H 

Q Set of edge bridges 

Hi,j 
Set of hosts connected to j-th interface of edge 
bridge bi 

j
iH  j-th element of Hi 
j

iD  j-th element of Di 

e=(vi,vj) An edge is an element in the set of E 

n(S) The number of elements in a set of S 

 

 
the core bridges, such as in property 2, because only edge 
bridges can request AFT entries. 

Lemma 1. Edge Bridge Selection 

Let bi be a bridge in metro Ethernet networks and Q be a set 
of edge bridges. If n(Pi)>n(Ti), then bi∈Q. 

Proof: Suppose, to the contrary, that bi is not an element of Q. 
Then, the number of active ports on bridge bi should be equal 
to the number of STP enabled ports on bridge bi. The case 
where the number of active ports on a bridge is less than the 
number of STP enabled ports violates property 1.         � 

 
Property 2. Calculation of Core Bridge’s AFT Size 

The size of an AFT in a core bridge increases in proportion 
to the number of active interfaces of the core bridge, and the 
result is calculated from the following equation: 

).()( ' BridgeDesignatedsportactive
portactive

CoreBridge AFTnAFTn ∑=  

Remark: The number of active ports is equal to the number 
of total active interfaces in a core bridge. 

 
We propose a physical topology discovery algorithm which 

consists of four major stages. In stage I, we initialize four sets: a 
set of edge bridges Q, a set of designated bridges , a set of 
operational interfaces Bb , and a set of STP enabled interfaces 

Bb . In stage II, we collect physical topology data such as P

BbD ∈

P∈

T ∈ i, 
Ti, and Di from all agents. The main goal here is to minimize 
the quantity of data collection and unnecessary overhead 
instead of collecting all entities of interface MIB [6] and bridge 
MIB [7]. Here, both getIFMIB and getSTPMIB are 
metaphysical terminologies, and the return value of them is 
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part of interface MIB [6] and bridge MIB [7]. In stage III, we 
select edge bridges based on definition 1, property 1, and 
lemma 1. In stage IV, two sub-functions of 
PhysicalTopologyDiscovery, FindBridgeGraph for the bridged 
network and FindHostGraph for the host network, are called 
up. The detailed steps of the physical topology discovery 
algorithms are described as follows. 
 

 

Fig. 3. Our physical topology discovery algorithm. 

procedure PhysicalTopologyDiscovery(bridgeSet) 
/* bridgeSet B={b1,b2,…,bN} */ 

begin 
/* Stage I. Data initialization */ 
edgebridgeSet Q←φ 
designatedbridgeSet Di ←φ 
enableportSet Pi←φ 
stpportSet Ti←φ 
/* Stage II. Data collection */ 

   for each bridge bi∈B  do { 
      Pi←getIFMIB(bi) 

Ti←getSTPMIB(bi) 
Di←getSTPMIB(bi) 

} 
/* Stage III. Edge bridge selection */ 
for each bridge bi∈B do { 

if(n(Pi) > n(Ti)) 
Q←Q∪ {bi} 

} 
/* Stage IV. Sub-procedures call */ 
FindBridgeGraph(B, D) 
FindHostGraph(Q) 

  end 

 
 

To help understand our algorithm, we explain it with Fig. 2 
as an example. The initial input data for our algorithm is the 
collection of bridges B in the metro Ethernet network. We can 
obtain the set of bridges B such as B={b1, b2, b3}. As a result of 
stage II, we can obtain Pi and Ti as follows:  

P1={p1, p2}, P2={p1, p2, p3}, and P3={p1, p2, p3}. 

T1={p1, p2}, T 2={p1, p2}, and T 3={p1, p2}. 

We can also obtain a set of designated bridges, Di, from stage 
II with the following two conditions:  

First, before spanning tree calculation (Mesh Physical 
Network), 

D1={(b1, b2), (b1, b3)}, D 2 ={(b2, b1), (b2, b3)}, and 

D3={(b3, b1), (b3, b2)}. 

Second, after spanning tree calculation (Tree Active 
Network), 

D1={(b1, b1), (b1, b1)}, D 2 ={(b2, b1), (b2, b2)}, and 

D3={(b3, b1), (b3, b2)}. 

Stage III selects the set of edge bridges Q={b2, b3}. 
Therefore, the results of Fig. 3 are the set of agents B, the set of 
designated bridges Di, and the set of edge bridges Q, and they 
are used as input parameters for the FindBridgeGraph and 
FindHostGraph procedures. 

More specifically, these procedures are performed for 
discovering some network graphs in the bridged and host 
networks, respectively. We describe the network graph 
discovery procedures in the following section. 

V. Sub-procedures of Our Physical Topology 
Discovery Algorithm 

We present the FindBridgeGraph procedure to find a 
physical topology in the bridged network and the 
FindHostGraph procedure to discover a physical topology in 
the host network. 

1. The FindBridgeGraph Procedure 

The main goal of this procedure is to discover a graph in the 
bridged network. We had sufficient information to perform this 
procedure through the PhysicalTopologyDiscovery procedure 
shown in Fig. 3. 

We first briefly describe how to find the set of bridges in the 
metro Ethernet network. And we discover edges between 
bridges with designated bridge information. Figure 4 gives the 
pseudo-code based on property 3 to discover undirected graph 
G=(V, E) in the bridged network regardless of calculating a 
spanning tree. A bridged network is an undirected graph for 
offering multiple redundant paths. We only need unidirectional 
information by property 3. The number of sending neighbors 
has been changed according to whether or not a spanning tree 
was calculated. In the case where a spanning tree has been 
calculated, a root bridge can start sending a BPDU; some 
designated bridges which receive it can also send the BPDU to 
other designated bridges. However, if before calculating a 
spanning tree, for example, a topology change happens in the 
network, all bridges have to start sending a BPDU. If a bridge 
has a lot of interfaces for running the STP, it has the same 
number of designated bridges as the number of STP-enabled 
interfaces. 

The main goal of this algorithm is to find the set of edges E 
and the set of vertices V in bridged networks. This procedure 
can find the set of edges by means of filtering duplication and 
dummy information. 

Property 3. Connection between Bridges 

Let bi and bj be bridges in metro Ethernet networks, be k
jb
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the k-th interface of a bridge bi and G=(V, E) be an undirected 
graph. If  has a designated bridge bk

ib j then bi is connected to 
bj. If the designated bridge of  is bk

ib i itself, then bi is not 
connected to one of any other bridges including bj. 

Remark: In an undirected graph, (bi, bj) is the same as (bj, bi). 
And the k-th interface of bridge bi is an STP-enabled port. 

 
It is simple to find a physical topology in bridged networks 

because the designated bridge information is offered by a 
standard SNMP MIB entity. Moreover, we can resolve the 
problem with property 2 by using AFT entries. 

In stage I, we initialize a vertex set V and an edge set E. In 
stage II, we insert all elements in the bridge set into the 
vertex set V. In stage III, we remove the designated bridge, 
which is a bridge from the designated bridge set D

B

i, because of 
applying the graph theory with the following condition: (bi, bi)  

E. In stage IV, we can obtain edge set excluding the 
following undirected graph condition: (b
∉ E

i, bj)≡(bj, bi). The 
detailed steps of our algorithm are described as follows. 
 

 

Fig. 4. The FindBridgeGraph procedure. 

procedure FindBridgeGraph(B, D) 
/* G=(V, E) */ 
   begin 
   /* Stage I. Data initialization */ 

vertexSet V←Q 
   edgeSet E←Q 

/* Stage II. Vertex creation */ 
   V←V∪B 

/* Stage III. Apply graph theory */ 
 for each designatedbridgeSet Di⊂D do { 
    for each designatedbridge D

j
i∈Di do { 

         if (bi= D
j
i ) 

             Di←Di―{D
j
i } 

      } 
} 
/* Stage IV. Edge creation */ 
for each designatedbridgeSet Di ⊂D do { 

      if(Di=φ )  
         continue 
      for each designatedbridge D

j
i ∈Di  do { 

/* (bi, D
j
i)≡(D

j
i, bi) ∵ undirected graph */ 

         E←E∪{(bi, D
j
i)} 

      } 
  } 

end 

 

 
We explain our algorithm with Fig. 2 as an example. Input 

arguments of the FindBridgeGraph procedure are the set of 
bridges B and the set of sets of designated bridges D. We can 
obtain the input arguments as follows: 

B={b1, b2, b3} and D={D1, D 2, D 3}. 

The vertex set V can be obtained from stage II as follows: 

V={b1, b2, b3}. We can find some sets of designated bridges 
with the following two conditions: 
First, before spanning tree calculation, 

D1={(b1, b2), (b1, b3)}, D2={(b2, b1), (b2, b3)}, and 
D3={(b3, b1), (b3, b2)}. 

Second, after spanning tree calculation, 
D1={}, D2={(b2, b1)}, and D3={(b3, b1), (b3, b2)}. 

In stage IV, the set of edges E is as follows: 
E={e1, e2, e3}={(b1, b2), (b3, b1), (b2, b3)}. 

2. The FindHostGraph Procedure 

The last step in physical topology discovery is to find hosts 
connected to edge bridges. We use AFT entries in the edge 
bridges for discovering some connectivity with hosts.  

We put the following property 4 to decide on the link 
connection type in the host networks. And we denote the j-th 
interface of an edge bridge bi by  and the MAC address of 
host B’s interface by b, which is expressed in lowercase letters. 

j
ib

Property 4. Connection between an Edge Bridge and Hosts 

Let A, B, and C be hosts and bi be an edge bridge. If bi has A, 
B, and C for the same interface j as the AFT entries, then is 
connected to interfaces of A, B, and C through a hub. Thus, we 
can find the following properties: 

j
ib

First, if (n(Hi,j)>1), then the edge bridge bi is connected to 
hosts with the number of n(Hi,j)in the shared segments. 

Second, if (n(Hi,j)=1), then the edge bridge bi is connected to 
only one host. That is, the connection between the edge bridge 
and the host is a point-to-point link. 

Third, if (n(Hi,j)=0), then the edge bridge bi is not connected 
to any hosts 

Remark: Here, Hi,j ={a, b, c} and  is an active interface 
not running STP. 

j
ib

 
The FindHostGraph procedure, as shown in Fig. 5, has the 

set of edge bridges as an input parameter. The getAFTMIB is a 
metaphysical terminology and carries AFT entries from all 
edge bridges. To minimize the influence of the size of AFT as 
property 2, an SNMP manager gets AFT entries from only 
edge bridges and the information is available for finding host 
connectivity. Hosts are connected to edge bridges through a 
hub or direct link as in property 4. We can obtain edge set E 
after running the following procedure. 

In stage I, we initialize vertex set V, edge set E, and host 
set . In stage II, to obtain vertex set V, we need to know 
AFT entries from BridgeMIB [7] and we can create the vertex 
set V as V=Q∪H

j
iH

i,j. In stage III, we can decide whether an edge 
bridge is connected to a host through a point to point link  
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or whether it is connected to more than two hosts through a 
hub. That is, edge set E becomes the union of the shared edge 
set Es and the point to point edge set EP. The detailed steps of 
our algorithm are described as follows. 
 

 

Fig. 5. The FindHostGraph procedure. 

procedure FindHostGraph (Q) 
/* G=(V, E) */ 
begin 

/* Stage I. Data initialization */ 
   vertexSet V←φ 
   edgeSet E←φ 
   hostSet H

j
i ←φ 

/* Stage II. Vertex creation */ 
   V←V∪Q 

 for each edgebridge bi∈Q do { 
getAFTMIB(bi) 
Hi,j←findAFTMIB(b

j
i       ) 

       V←V∪Hi,j 
   } 

/* Stage III. Edge creation */ 
for each edgebridge bi∈Q do { 

    if (n(Hi,j)≥2) {  
for each host H

j
i ∈Hi,j do { 

Es←Es∪{(bi, H
j
i )} 

            } 
      } 
      else{ 

for each host H
j
i ∈Hi,j do { 

EP←EP∪{(bi, H
j
i )}  

          } 
      } 
      E=Es∪EP 
 } 
end 

 
 

We explain our algorithm with Fig. 2 as an example. An 
input argument of the FindHostGraph procedure is the set of 
edge bridges Q. We can obtain the input argument as Q={b2, b3}. 
We can obtain the vertex set V from stage II as V=Q∪H2,3 
∪H3,3={b2, b3, X, Y, Z}. Here, H2,3={X} and H3,3={Y, Z}. Stage 
III finds the subset of edge set E by applying property 4 as 
ES={(b3, Y), (b3, Z)} and EP={(b2, X)}. Therefore, we can 
obtain the set of edges as E={e1, e2, e3}={(b3, Y), (b3, Z), (b2, X )}. 

VI. Experiments 

1. Implementation 

The basic component processing management functionalities 
[14] are management application, remote method invocation 
(RMI) server, and SNMP manager. The algorithm has been 
implemented in the management application, that is, a graphical 
user interface (GUI), and was tested on a variety of networks. 
Figure 6 depicts a high-level view of our implementation 

architecture.  
The management application requests a part of the interface 

MIB [6] and the bridge MIB [7] to the SNMP manager 
through the RMI Server. The SNMP manager can submit a 
query message to all SNMP agents, that is, all bridges. After 
receiving the interface MIB [6] and the bridge MIB [7] from all 
SNMP agents, the SNMP manager inserts them into the DB 
with the following schema: dot1dPTDIfBasicEntry, 
dot1dPTDBaseInfo, dot1dPTDStp, dot1dPTDStpPortEntry, 
dot1dPTDTpFdbEntry, and dot1dPTDStaticEntry expressed in 
Tables 3 through 8. Then, the SNMP manager notifies the fact 
to the management application. The management application 
can fetch the physical topology information from the DB and 
carry out our topology discovery algorithm; it then shows the 
results via a GUI. 
 

 

Fig. 6. Implementation architecture. 
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We implemented the management application on Windows 
XP using Java language and the SNMP manager on Linux OS 
using C plus language. The RMI Server which interfaces the 
management application to the SNMP manager is 
implemented on Linux OS using Java language.  

Tables 3 through 6 show the data used for deciding on the set 
of edge bridges Q and for discovering the bridges’ connections 
in the bridged network. Tables 7 and 8 show the data used for 
discovering connections between edge bridges and hosts in the 
host network. Table 7 is taken from the address learning 
function and Table 8 is taken by management. 

Figure 7 depicts the representative test network for 
discovering physical topology in the metro Ethernet network. It 
 

Table 3. Schema of dot1dPTDIfBasicEntry. 

Name Syntax OID 

agent_ip String  

ifOperStatus Integer 1.3.6.1.2.1.2.2.1.8 
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Table 4. Schema of dot1dPTDBaseInfo. 

Name Syntax OID 

agent_ip String  

dot1BaseBridgeAddress String 1.3.6.1.2.1.17.1.1 

 

 

Table 5. Schema of dot1dPTDStp. 

Name Syntax OID 

agent_ip String  

dot1dStpPriority Integer 1.3.6.1.2.1.17.2.2 

dot1dStpRootPort Integer 1.3.6.1.2.1.17.2.7 

 

 

Table 6. Schema of dot1dPTDStpPortEntry. 

Name Syntax OID 

agent_ip String  

dot1dStpPort Integer  1.3.6.1.2.1.17.2.15.1.1

dot1dStpPortState Enumerated 1.3.6.1.2.1.17.2.15.1.3

dot1dStpPortEnable Enumerated 1.3.6.1.2.1.17.2.15.1.4
dot1dStpPortDesignated
Bridge String 1.3.6.1.2.1.17.2.15.1.8

 

 

Table 7. Schema of dot1dPTDTpFdbEntry. 

Name Syntax OID 

agent_ip String  

dot1dTpFdbAddress String 1.3.6.1.2.1.17.4.3.1.1 

dot1dTpFdbPort Integer 1.3.6.1.2.1.17.4.3.1.2 

dot1dTpFdbStatus Enumerated 1.3.6.1.2.1.17.4.3.1.3 

 

 

Table 8. Schema of dot1dPTDStaticEntry. 

Name Syntax OID 

agent_ip String  

dot1dStaticAddress String 1.3.6.1.2.1.17.5.1.1.1 

dot1dStaticReceivePort Integer 1.3.6.1.2.1.17.5.1.1.2 

 

 
is composed of twelve bridges and one hundred ninety three 
hosts. The bridge number shown in Fig. 7 represents the bridge 

priority; a small number has high priority. We used various 
products such as Cisco’s Catalyst3550 [15], Riverstone’s 
RS1000 and RS3000 [16], and Paxcomm’s NDX2104 and 
NGX2104 [17] to demonstrate interoperability.  

2. Results 

A primary goal of the experimental study with our physical 
topology discovery tool is to correctly determine a physical 
topology including many links eliminated by STP. We found a 
graph with multiple inactive paths for the metro Ethernet 
network as well as a spanning tree, which related works also 
had found. A second goal of our experimental study is to verify 
the practicality of our physical topology discovery algorithm 
by measuring its calculation time requirements for various 
network sizes. We tested the relationship between the number 
of bridges and physical topology discovery calculation time 
and the relationship between the number of hosts and physical 
topology discovery calculation time. 

Although the accuracy of the physical topology is the most 
important criterion when judging the performance of this 
algorithm, its time performance may also be important in 
some applications. The majority of the execution time is spent 
obtaining the interface MIB [16] and bridge MIB [7] from the 
bridges. The execution time depends principally on the 
communication delay due to the slow speed of SNMP. To 
minimize this influence, our algorithm separated the data 
calculation function from the data collection procedure. Due 
to backup physical topology data in our DB, we can discover a 
physical topology at any time without decreasing performance. 
The performances of previous approaches [3]-[5] decreased 
significantly in proportion to the number of hosts due to the 
size of the AFT, as we addressed in section IV. However, our 
physical topology discovery algorithm is not seriously affected 
by the number of hosts because we divided the metro Ethernet 
network into a bridged network and host networks, and for the 
bridged networks our algorithm does not need AFT entries. It 
took below one second to calculate our physical topology 
discovery under the environment of less than 5000 hosts and 
100 bridges. Therefore, our algorithm is a very precise 
solution to discover a physical topology for metro Ethernet 
networks.  

For rapid convergence, RSTP became the IEEE 802.1w [8] 
standard in 2001. And for supporting multiple trees in VLAN 
environments, MSTP became the IEEE P802.1s/D15 [9]  
standard at the end of 2002. However, further work is required 
to standardize MIBs for RSTP and MSTP. The standard MIB 
for RSTP is now being processed in an IEEE draft [12] and the 
MSTP MIB is ready to be proposed in an IEEE draft. When 
the RSTP MIB is implemented, we don’t need to get the 
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Fig. 7. Test network for discovering a physical topology. 
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Fig. 8. Network manager’s user interface.  
 
interface MIB to decide on the edge bridges because the edge 
port in the RSTP MIB may be used instead of the number of 
active ports. Moreover, if we could get an MSTP MIB in a 
bridged network, we would be able to discover multiple logical 
VLAN paths. We hope to be able to implement this research in 
the near future. 

Our algorithm found an exactly complete physical topology 
including inactive interfaces eliminated by the STP in metro 

Ethernet networks. Figure 8 shows an example of our network 
manager’s user interface when connected to the twelve bridges 
depicted in Fig. 7. Figure 9(a) shows the results of a physical 
topology for our test network in our ETRI laboratory. In Fig. 
9(a), the RS1000 is a root bridge and the blue colored four 
bridges are edge bridges. When we click these edge bridges we 
can know the physical topology in the host network depicted in 
Fig. 9(b). Figure 9(b) shows the results of a host network 
connected to an edge bridge, NDX2104-8. Ports 1, 7, 8, 9, 10, 
11, 12, 13, and 14 are connected to the edge bridge NDX2104-
8 through a hub, and ports 2, 3, and 4 are directly connected to 
the edge bridge NDX2104-8.  

Although the correctness of the topology is the most 
important criterion when judging the performance of this 
algorithm, its execution time performance may also be 
important in some applications. The majority of the execution 
time is spent fetching the interface MIB and bridge MIB 
information from the bridges. This is partially due to the slow 
speed of SNMP, but most significantly due to a desire not to 
swamp the bridges with queries. However, the topology of 
metro Ethernet networks changes rather slowly. To minimize 
this overhead, we isolated the topology calculation procedure 
from the MIB data fetch procedure.  

Figures 10 and 11 show the performance of the physical 
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Fig. 9. Result of our physical topology discovery. 

(a) Bridged network topology 

(b) Host network topology 

 
 

 

Fig. 10. The performance of the time to calculate a topology with
varying numbers of hosts and fewer than 12 bridges. 
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topology discovery algorithm running on a 2.20 GHz 
Pentium IV. The number of hosts and bridges were varied by 
adding the entries for hosts or bridges from a previously 
collected DB. 

 

Fig. 11. The performance of the time to calculate a topology with 
varying numbers of bridges and fewer than 5000 hosts.
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VII. Conclusions 

Automatic discovery of physical topology plays a crucial 
role in enhancing the manageability of modern metro Ethernet 
networks. Despite the importance of the problem, earlier 
research and commercial network management tools have 
typically concentrated on either i) discovering logical (that is, 
Layer-3) topology, which implies that the connectivity of all 
Layer-2 elements is ignored, or ii) proprietary solutions 
targeting specific product families. In this paper, we have 
proposed a novel and practical algorithm for discovering the 
physical topology in a metro Ethernet network. The common 
problem of the recent work by other researchers is that their 
algorithms can only discover spanning tree paths and not the 
complete physical topology of a metro Ethernet network. They 
also had a serious performance reducing problem because their 
algorithm depended on AFT entries only. To our knowledge, 
our algorithm is the only solution that can find the exact 
physical topology in a metro Ethernet network. It took below 
one second to calculate our physical topology discovery in 
conditions of fewer than 5000 hosts and fewer than 100 bridges. 
As metro Ethernet network technology develops, we will 
continue to study topology discovery exploiting RSTP and 
MSTP as they mature to overcome the limitations of STP. 
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