CONFORMAL CHANGE OF THE CONNECTION IN 8-DIMENSIONAL g-UFT

CHUNG HYUN CHO

Abstract. We investigate change of the connection induced by the conformal change in 8-dimensional g-unified field theory. These topics will be studied for the second class with the first category in 8-dimensional case.

1. Introduction

The conformal change in a generalized 4-dimensional Riemannian space connected by an Einstein's connection was primarily studied by HLAVAT $\acute{Y}[10]$. CHUNG[8] also investigated the same topic in 4-dimens ional *g-unified field theory.

The Einstein's connection induced by the conformal change for the second class with the first category of the torsion tensor $S_{\omega\mu}{}^{\nu}$ and $U_{\omega\mu}{}^{\nu}$ in 7-dimensional case were investigated by CHO[3,4].

In the present paper, we investigate change of connecction $\Gamma^{\nu}_{\omega\mu}$ induced by the conformal change in 8-dimensional g-unified field theory. These topics will be studied for the second class with the first category in 8-dimensional case.

Received July 15, 2005. Accepted August 19, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 83E50, 82C05, 58A05.

Key words and phrases: Einstein connection, conformal change.

This work supported by Inha university Research Grant. (INHA-2005).

2. Preliminaries

This chapter is a brief collection of basic concepts, notations, theorems, and results needed in our further considerations. They may be referred to CHUNG[5-7], CHO[1-4].

2.1. n-dimensional g-unified field theory

The n-dimensional g-unified field theory (n-g-UFT hereafter) was originally suggested by HLAVATÝ[10] and systematically introduced by CHUNG[8].

Let $X_n (n \geq 2)$ be an *n*-dimensional generalized Riemannian manifold, referred to a real coordinate system x^{ν} obeying coordinate transformations $x^{\nu} \to x^{\nu'}$, for which

$$Det\left(\left(\frac{\partial x}{\partial x'}\right)\right) \neq 0.$$
 (2.1)

In the usual Einstein's *n*-dimensional unified field theory, the manifold X_n is endowed with a general real nonsymmetric tensor $g_{\lambda\mu}$ which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}$:

$$g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu} \tag{2.2}$$

where

$$Det((g_{\lambda\mu})) \neq 0$$
 $Det((h_{\lambda\mu})) \neq 0.$ (2.3)

Therefore we may define a unique tensor $h^{\lambda\nu} = h^{\nu\lambda}$ by

$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}. \tag{2.4}$$

In our n-g-UFT, the tensors $h_{\lambda\mu}$ and $h^{\lambda\nu}$ will serve for raising and/or lowering indices of the tensors in X_n in the usual manner.

The manifold X_n is connected by a general real connection $\Gamma^{\nu}_{\omega\mu}$ with the following transformation rule :

$$\Gamma^{\nu'}_{\omega'\mu'} = \frac{\partial x^{\nu'}}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial x^{\omega'}} \cdot \frac{\partial x^{\gamma}}{\partial x^{\mu'}} \Gamma^{\alpha}_{\beta\gamma} + \frac{\partial^2 x^{\alpha}}{\partial x^{\omega'} \partial x^{\mu'}} \right)$$
(2.5)

and satisfies the system of Einstein's equations

$$D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha} \tag{2.6}$$

where D_{ω} denotes the covariant derivative with respect to $\Gamma^{\nu}_{\lambda\mu}$ and

$$S_{\omega\mu}{}^{\nu} = \Gamma^{\nu}_{[\omega\mu]} \tag{2.7}$$

is the torsion tensor of $\Gamma^{\nu}_{\omega\mu}$. The connection $\Gamma^{\nu}_{\omega\mu}$ satisfying (2.6) is called the Einstein's connection.

In our further considerations, the following scalars, tensors, abbreviations, and notations for $p = 0, 1, 2, \cdots$ are frequently used:

$$\mathfrak{g} = Det((g_{\lambda\mu})) \neq 0, \quad \mathfrak{h} = Det((h_{\lambda\mu})) \neq 0,$$

$$(2.8a)$$

$$\mathfrak{t} = Det((k_{\lambda\mu})),$$

$$g = \frac{\mathfrak{g}}{\mathfrak{h}}, \quad k = \frac{\mathfrak{t}}{\mathfrak{h}},$$
 (2.8b)

$$K_p = k_{[\alpha_1}^{\alpha^1} \cdots k_{\alpha_p]}^{\alpha^p}, \quad (p = 0, 1, 2, \cdots)$$
 (2.8c)

$$^{(0)}k_{\lambda}{}^{\nu} = \delta_{\lambda}{}^{\nu}, \quad ^{(1)}k_{\lambda}{}^{\nu} = k_{\lambda}{}^{\nu}, \quad ^{(p)}k_{\lambda}{}^{\alpha} = ^{(p-1)}k_{\lambda}{}^{\alpha}k_{\alpha}{}^{\nu},$$
 (2.8d)

$$K_{\omega\mu\nu} = \nabla_{\nu}k_{\omega\mu} + \nabla_{\omega}k_{\nu\mu} + \nabla_{\mu}k_{\omega\nu}, \qquad (2.8e)$$

$$\sigma = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$
 (2.8 f)

where ∇_{ω} is the symbolic vector of the convariant derivative with respect to the Christoffel symbols $\{^{\nu}_{\lambda\mu}\}$ defined by $h_{\lambda\mu}$. The scalars and vectors introduced in (2.8) satisfy

$$K_0 = 1; K_n = k$$
 if n is even; $K_p = 0$ if p is odd, (2.9a)

$$g = 1 + K_2 + \dots + K_{n-\sigma},$$
 (2.9b)

$$^{(p)}k_{\lambda\mu} = (-1)^{p(p)}k_{\mu\lambda}, \quad ^{(p)}k^{\lambda\mu} = (-1)^{p(p)}k^{\nu\lambda}.$$
 (2.9c)

Furthermore, we also use the following useful abbreviations, denoting an arbitrary tensor $T_{\omega\mu\nu}$, skew-symmetric in the first two indices, by T:

$$T = T_{\omega\mu\nu}^{pqr} = T_{\alpha\beta\gamma}^{(p)} k_{\omega}^{\alpha(q)} k_{\mu}^{\beta(r)} k_{\nu}^{\gamma}, \qquad (2.10a)$$

$$T = T_{\omega\mu\nu} = \overset{000}{T},\tag{2.10b}$$

$$2 \stackrel{pqr}{T}_{\omega[\lambda\mu]} = \stackrel{pqr}{T}_{\omega\lambda\mu} - \stackrel{pqr}{T}_{\omega\mu\lambda}, \qquad (2.10c)$$

$$2 \overset{(pq)r}{T}_{\omega\lambda\mu} = \overset{pqr}{T}_{\omega\lambda\mu} + \overset{qpr}{T}_{\omega\lambda\mu}. \tag{2.10d}$$

We then have

$$\overset{pqr}{T}_{\omega\lambda\mu} = -\overset{qpr}{T}_{\lambda\omega\mu}. \tag{2.11}$$

If the system (2.6) admits $\Gamma^{\nu}_{\lambda\mu}$, using the above abbreviations it was shown that the connection is of the form

$$\Gamma^{\nu}_{\omega\mu} = \{^{\nu}_{\omega\mu}\} + S_{\omega\mu}{}^{\nu} + U^{\nu}_{\omega\mu} \tag{2.12}$$

where

$$U_{\nu\omega\mu} = 2 \stackrel{001}{S}_{\nu(\omega\mu)}. \tag{2.13}$$

The above two relations show that our problem of determining $\Gamma^{\nu}_{\omega\mu}$ in terms of $g_{\lambda\mu}$ is reduced to that of studying the tensor $S_{\omega\mu}{}^{\nu}$. On the other hand, it has also been shown that the tensor $S_{\omega\mu}{}^{\nu}$ satisfies

$$S = B - 3 S (2.14)$$

where

$$2B_{\omega\mu\nu} = K_{\omega\mu\nu} + 3K_{\alpha[\mu\beta}k^{\alpha}_{\omega]}k^{\beta}_{\nu}. \tag{2.15}$$

2.2. Some results for the second class in 8-g-UFT

In this section, we introduce some results of 8-g-UFT without proof, which are needed in our subsequent considerations.

They may be referred to CHUNG[5-7].

DEFINITION 2.1. In 8-g-UFT, the tensor $g_{\lambda\mu}(k_{\lambda\mu})$ is said to be the second class with the first category, if $K_2 \neq 0$, $K_4 = K_6 = K_8 = 0$.

THEOREM 2.2. (Main recurrence relations). For the second class with the first category in 8-g-UFT, the following recurrence relation hold

$$^{(p+2)}k_{\lambda}^{\ \nu} = -K_2^{(p)}k_{\lambda}^{\ \nu}, \quad (p=0,1,2,\cdots).$$
 (2.16)

THEOREM 2.3. (For the second class with the first category in 8g-UFT). A necessary and sufficient condition for the existence and uniqueness of the solution of (2.5) is

$$1 - (K_2)^2 \neq 0. (2.17)$$

If the condition (2.17) is satisfied, the unique solution of (2.14) is given by

$$(1 - K_2^2)(B - S) = K_2(1 - K_2)B + 2 B^{(10)1}.$$
 (2.18)

3. Conformal change of the 8-dimensional conection for the second class with first category

In this final chapter we investigate the change $\Gamma^{\nu}_{\omega\mu} \to \overline{\Gamma}^{\nu}_{\omega\mu}$ of the connection for the second class with first category induced by the conformal change of the tensor $g_{\lambda\mu}$, using the recurrence relations and theorems introduced in the preceding chapter.

We say that X_n and \overline{X}_n are conformal if and only if

$$\overline{g}_{\lambda\mu}(x) = e^{\Omega} g_{\lambda\mu}(x) \tag{3.1}$$

where $\Omega = \Omega(x)$ is an at least twice differentiable function. This conformal change enforces a change of the connection $\Gamma^{\nu}_{\omega\mu}$. An explicit representation of the change of 8-dimensional vector $\Gamma^{\nu}_{\omega\mu}$ for the second class will be exhibited in this chapter.

AGREEMENT 3.1. Throughout this section, we agree that, if T is a funtion of $g_{\lambda\mu}$, then we denote \overline{T} the same function of $\overline{g}_{\lambda\mu}$. In particular, if T is a tensor, so is \overline{T} . Furthermore, the indices of $T(\overline{T})$ will be raised and/or lowered by means of $h^{\lambda\nu}(\overline{h}^{\lambda\nu})$ and/or $h_{\lambda\nu}(\overline{h}_{\lambda\nu})$.

The results in the following theorems are needed in our further considerations. They may be referred to CHUNG[5-7], CHO[1-2].

THEOREM 3.2. In n-g-UFT, the conformal change (3.1) induces the following changes:

$$^{(p)}\overline{k}_{\lambda\mu} = e^{\Omega(p)}k_{\lambda\mu}, \quad ^{(p)}\overline{k}_{\lambda} = ^{(p)}k_{\lambda}^{\nu}, \quad ^{(p)}\overline{k}^{\lambda\mu} = e^{-\Omega(p)}k^{\lambda\mu}, \quad (3.2a)$$

$$\overline{g} = g, \quad \overline{K}_p = K_p, \qquad (p = 1, 2, \cdots).$$
 (3.2b)

THEOREM 3.3. In n-g-UFT, the conformal change (3.1) induces the following changes:

$$\overline{\left\{\begin{array}{c}\mu\\\omega\mu\end{array}\right\}} = \left\{\begin{array}{c}\mu\\\omega\mu\end{array}\right\} + \delta^{\nu}{}_{(\omega}\Omega_{\mu)} - \frac{1}{2}h_{\omega\mu}\Omega^{\nu}.$$
(3.3)

where $\Omega_{\alpha} = \partial_{\alpha} \Omega$

THEOREM 3.4. (For the second class with the first category in 8-g-UFT). The change of the tensor $B_{\omega\mu\nu}$ induced by the conformal change (3.1) may be given by

$$\overline{B}_{\omega\mu\nu} = e^{\Omega} (B_{\omega\mu\nu} + k_{\nu[\omega}\Omega_{\mu]} - k_{\omega\mu}\Omega_{\nu}
- h_{\nu[\omega}k_{\mu]}{}^{\alpha}\Omega_{\alpha} - 2K_{2}\delta_{\nu[\omega}k_{\mu]}{}^{\alpha}\Omega_{\alpha} - K_{2}k_{\omega\mu}\delta_{\nu}^{\alpha}\Omega_{\alpha}.)$$
(3.4)

Now, we are ready to derive representations of the changes $S_{\omega\mu}^{\nu} \to \overline{S}_{\omega\mu}^{\nu}$ and $U_{\omega\mu}^{\nu} \to \overline{U}_{\omega\mu}^{\nu}$ in 8-g-UFT for the second class with the first category induced by the conformal change (3.1).

THEOREM 3.5. (For the second class with first category in 8-g-UFT). The conformal change (3.1) induces the following change:

$$2 B_{\omega\mu\nu}^{(10)1} = e^{\Omega} (2 B_{\omega\mu\nu}^{(10)1} + (-2(K_2)^2 \delta_{\nu[\omega} k_{\mu]}^{\alpha} - 2K_2 \delta_{\nu[\omega} k_{\mu]}^{\alpha} + K_2 k_{\nu[\omega} k_{\mu]}^{\alpha}) \Omega_{\alpha} + K_2 k_{\nu[\omega} \Omega_{\mu]}).$$
(3.5)

THEOREM 3.6. The conformal change (3.1) may be represented by

$$\frac{\overline{ppq}}{B}_{\omega\mu\nu} = e^{\Omega} [B_{\omega\mu\nu}^{ppq} + (-1)^p \{2^{(p+q+2)} k_{\nu[\omega}^{(p+1)} k_{\mu]}^{\delta} + (2p+1) k_{\omega\mu}^{(2+q)} k_{\nu}^{\delta} - (2p+1) k_{\omega\mu}^{(q)} k_{\nu}^{\delta} + (p+q+1) k_{\nu[\omega}^{(p)} k_{\mu]}^{\delta} - (p+q) k_{\nu[\omega}^{(p+1)} k_{\mu]}^{\delta} \} \Omega_{\delta}].$$

$$\left(p = 0, 1, 2, 3, 4, \cdots \right)$$

$$q = 0, 1, 2, 3, 4, \cdots$$

By the above relation (3.6), we obtain $\overset{001}{B}$.

THEOREM 3.7. The change $S_{\omega\mu}{}^{\nu} \to \overline{S}_{\omega\mu}{}^{\nu}$ induced by conformal change (3.1) may be represented by

$$\overline{S}_{\omega\mu}^{\ \nu} = S_{\omega\mu}^{\ \nu} + S_{\omega\mu}^{\ \nu}, \tag{3.7}$$

where

$$S_{1}^{\omega\mu}{}^{\nu} = -k_{\omega\mu}\Omega^{\nu} + \frac{1}{1 - K_{2}^{2}} [(1 - 2K_{2})k^{\nu}{}_{[\omega}\Omega_{\mu}]$$
$$+ ((K_{2} - 1)h^{\nu}{}_{[\omega}k_{\mu]}{}^{\alpha} + 4K_{2}^{2}\delta^{\nu}{}_{[\omega}k_{\mu]}{}^{\alpha}$$
$$-2K_{2}k^{\nu}{}_{[\omega}\delta_{\mu]}{}^{\alpha})\Omega_{\alpha}].$$

Proof. In virtue of (2.18) and Agrement (3.1), we have

$$(1 - \overline{K_2}^2)(\overline{B} - \overline{S}) = \overline{K_2}(1 - \overline{K_2})\overline{B} + 2 B$$
 (3.8)

The relation (3.7) follows by substituiting (3.2), (3.4), (3.5), (2.10), (2.16), Definition (2.1), into (3.8).

THEOREM 3.8. The change $U_{\omega\mu}{}^{\nu} \to \overline{U}_{\omega\mu}{}^{\nu}$ induced by conformal change (3.1) may be represented by

$$\overline{U}_{\omega\mu}^{\nu} = U_{\omega\mu}^{\nu} + \frac{1}{1 - K_2^2} [(-K_2 + 3K_2^2) \, \delta_{(\omega}^{\nu} \Omega_{\mu)} \\
+ (K_2 - 4K_2^2) \, \delta_{\omega\mu} \Omega^{\nu} - (1 + K_2 + 2K_2^2) \, k_{(\omega}^{\nu} k_{\mu)}^{\alpha} \Omega_{\alpha}].$$
(3.9)

Proof. In virtue of (2.13) and Agreement (3.1), we have

$$\overline{U}_{\nu\omega\mu} = 2 \stackrel{\overline{001}}{S}_{\nu(\omega\mu)}. \tag{3.10}$$

The relation (3.9) follows by substituting (3.7), (2.10), Definition (2.1), (2.16), Theorem 3.6, (3.2) into (3.10).

THEOREM 3.9. The change of the connection $\Gamma_{\omega\mu}^{\ \nu} \to \overline{\Gamma}_{\omega\mu}^{\ \nu}$ induced by conformal change (3.1) may be represented by

$$\overline{\Gamma}_{\omega\mu}^{\nu} = \Gamma_{\omega\mu}^{\nu} + S_{\omega\mu}^{\nu} + U_{\omega\mu}^{\nu}, \tag{3.11}$$

where

$$\begin{split} U_{1}^{\ \ \nu} = & -\frac{1}{2} h_{\omega\mu} \Omega^{\nu} + \frac{1}{1 - K_{2}^{2}} [(1 - K_{2} + 2K_{2}^{2}) \, \delta^{\nu}_{\ (\omega} \Omega_{\mu)} \\ & + (K_{2} - 4K_{2}^{2}) \, \delta_{\omega\mu} \Omega^{\nu} - (1 + K_{2} + 2K_{2}^{2}) \, k^{\nu}_{\ (\omega} k_{\mu)}^{\ \alpha} \Omega_{\alpha}]. \end{split}$$

Proof. In virtue of (2.12) and Agreement (3.1), we have

$$\overline{\Gamma}_{\omega\mu}^{\ \nu} = \overline{\left\{\begin{array}{c} \mu \\ \omega\mu \end{array}\right\}} + \overline{S}_{\omega\mu}^{\ \nu} + \overline{U}_{\omega\mu}^{\ \nu}. \tag{3.12}$$

The relation (3.11) follows by substituting (3.3), (3.7), (3.9) into (3.12).

References

[1] C.H. Cho, Conformal change of the connection in 3- and 5-dimensional ${}^*g^{\lambda\nu}$ -unified Field Theory, BIBS, Inha Univ. 13 (1992), 11-19.

- [2] —, Conformal change of the connection for the first class in 5-dimensional ${}^*g^{\lambda\nu}$ -unified Field Theory, Kangweon-Kyungki Math. Jour. **2** (1994), 19-33.
- [3] —, Conformal change of the tensor $S_{\omega\mu}^{\nu}$ in 7-dimensional g-UFT, Bull.Korean Math. Soc. 38 (2001), No.1, 197-203.
- [4] Conformal change of the tensor $U_{\omega\mu}^{\nu}$ in γ -dimensional g-UFT, Bull. Korean Math. Soc. 41 (2004), No.4, 731-737.
- [5] K.T. Chung, Conformal change in Einstein's ${}^*g^{\lambda\nu}$ -unified field theory, Nuove Cimento (X)58B (1968), 201-212.
- [6] ——, Einstein's connection in terms of ${}^*g^{\lambda\nu}$, Nuove Cimento (X) 27 (1963), 1297-1324.
- [7] ——, S.K. Han, Eight-Dimensional Einstein's connection for the second class I. The recurrence Relation in 8-g-UFT, Honam Mathematical J. 26 (2004), No. 4, 509-532.
- [8] V. HLAVATÝ, Geometry of Einstein's unified field theory, P. Noordhoff Ltd (1957).

Chung Hyun Cho
Department of Mathematics
Inha University
Incheon, 402-751, Korea
Email: chcho@inha.ac.kr