KYUNGPOOK Math. J. 45(2005), 115-121

Quasi BCC-algebras

YOUNG BAE JUN Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea e-mail: ybjun@gsnu.ac.kr

SEOK ZUN SONG Department of Mathematics, Cheju National University, Cheju 690-756, Korea e-mail: szsong@cheju.ac.kr

ABSTRACT. Using the concept of fuzzy points, the notions of fuzzy point BCC-(sub)algebras, quasi BCC-(sub)algebras and quasi BCC-ideals are introduced. Some characterizations of them are discussed.

1. Introduction

In 1966, Y. Imai and K. Iséki [8] defined a class of algebras of type (2,0) called *BCK-algebras* which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [10]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori [9] introduced a notion of BCC-algebras, and W. A. Dudek [1], [2] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [6], W. A. Dudek and X. H. Zhang introduced a notion of BCC-ideals in BCC-algebras (see also [5]). In this paper, we use the notion of BCC-ideals in BCC-algebras (see also [5]). In this paper, we use the notion of fuzzy points to establish the notion of fuzzy point BCC-(sub)algebras, quasi BCC-(sub)algebras and quasi BCC-ideals. We investigate some related properties.

2. Preliminaries

Recall that a BCC-algebra is an algebra (X, *, 0) of type (2,0) satisfying the following axioms:

Received January 9, 2004, and, in revised form, March 19, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25, 03B52.

Key words and phrases: Quasi BCC-(sub)algebra, fuzzy point BCC-(sub)algebra, quasi BCC-ideal.

This work was supported by grant R01-2001-000-00004-0 from the Korea Science and Engineering Foundation.

- (C1) ((x*y)*(z*y))*(x*z) = 0,
- (C2) 0 * x = 0,
- (C3) x * 0 = x,
- (C4) x * y = 0 and y * x = 0 imply x = y.

for every $x, y, z \in X$. For any BCC-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X. In a BCC-algebra X, the following holds (see [7]).

- $x * y \le x$,
- $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$

for all $x, y \in X$. A nonempty subset S of a BCC-algebra X is said to be a BCCsubalgebra of X if $x * y \in S$ whenever $x, y \in S$. A nonempty subset A of a BCCalgebra X is called a BCC-*ideal* of X if it satisfies

- $\bullet \ 0 \in A,$
- $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.

Note that every BCC-ideal of a BCC-algebra X is a BCC-subalgebra of X. A fuzzy set μ in a set X is called a *fuzzy point* if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\alpha \in (0, 1]$ we denote this fuzzy point by x_{α} , where the point x is called its *support*. For a fuzzy set μ in X and $\alpha \in [0, 1]$, the set $U(\mu; \alpha) := \{x \in X \mid \mu(x) \geq \alpha\}$ is called a *upper level set* of μ . A fuzzy set μ in a BCC-algebra X is called a *fuzzy* BCC-*subalgebra* of X if $\mu(x * y) \geq \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in a BCC-algebra X is called a *fuzzy* BCC-*ideal* of X it it satisfies

- $\mu(0) \ge \mu(x)$ for all $x \in X$,
- $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\}$ for all $x, y, z \in X$.

3. Quasi BCC-algebras

In what follows, let X denote a BCC-algebra unless otherwise specified. Let $\mathbb{F}(X)$ denote the set of all fuzzy points in X and define a binary operation " \odot " on $\mathbb{F}(X)$ by $x_{\alpha} \odot y_{\beta} = (x * y)_{\min\{\alpha,\beta\}}$ for all $x_{\alpha}, y_{\beta} \in \mathbb{F}(X)$. We can easily check the following results:

- (q1) $((x_{\alpha} \odot y_{\beta}) \odot (z_{\gamma} \odot y_{\beta})) \odot (x_{\alpha} \odot z_{\gamma}) = 0_{\min\{\alpha,\beta,\gamma\}},$
- (q2) $0_{\delta} \odot x_{\alpha} = 0_{\min\{\alpha,\delta\}},$
- (q3) $x_{\alpha} \odot 0_{\delta} = x_{\min\{\alpha,\delta\}}$

for all $x_{\alpha}, y_{\beta}, z_{\gamma}, 0_{\delta} \in \mathbb{F}(X)$. But the following implication

116

(q4)
$$x_{\alpha} \odot y_{\beta} = 0_{\min\{\alpha,\beta\}}, \ y_{\beta} \odot x_{\alpha} = 0_{\min\{\alpha,\beta\}} \Rightarrow x_{\alpha} = y_{\beta}$$

does not hold in general. For, if we consider two fuzzy points $b_{0.3}$ and $b_{0.7}$ where b is an element of a BCC-algebra (X, *, 0), then

$$b_{0.3} \odot b_{0.7} = (b * b)_{\min\{0.3, 0.7\}} = 0_{0.3}$$

and

$$b_{0.7} \odot b_{0.3} = (b * b)_{\min\{0.3, 0.7\}} = 0_{0.3},$$

but $b_{0.3} \neq b_{0.7}$.

Hence $\mathbb{F}(X)$ may not be a BCC-algebra under the operation " \odot ". We now call $\mathbb{F}(X)$ the *quasi* BCC-*algebra*.

Definition 3.1. A subset Ω of the quasi BCC-algebra $\mathbb{F}(X)$ is called a *quasi* BCCsubalgebra if $x_{\alpha} \odot y_{\beta} \in \Omega$ whenever $x_{\alpha}, y_{\beta} \in \Omega$.

For any $\alpha \in (0,1]$, let $\mathbb{F}_{\alpha}(X)$ denote the set of all fuzzy points in X with the value α . It is easily to check that $(\mathbb{F}_{\alpha}(X), \odot, 0_{\alpha})$ is a BCC-algebra and that $\mathbb{F}_{\alpha}(X)$ can be identified with X. We call $\mathbb{F}_{\alpha}(X)$ a *fuzzy point* BCC-*algebra*.

Definition 3.2. Let $\alpha \in (0, 1]$. A subset Ω_{α} of a fuzzy point BCC-algebra $\mathbb{F}_{\alpha}(X)$ is called a *fuzzy point* BCC-subalgebra if $x_{\alpha} \odot y_{\alpha} \in \Omega_{\alpha}$ whenever $x_{\alpha}, y_{\alpha} \in \Omega_{\alpha}$.

Example 3.3. Let $X = \{0, a, b, c, d\}$ be a BCC-algebra with the following Cayley table:

We know that $(\mathbb{F}_{0.5}(X), \odot, 0_{0.5})$ is a fuzzy point BCC-algebra and $\Omega_{0.5} = \{0_{0.5}, a_{0.5}, b_{0.5}\}$ is a fuzzy point BCC-subalgebra of $\mathbb{F}_{0.5}(X)$.

Remark. Let $\alpha \in (0,1]$. Then $\mathbb{F}_{\alpha}(X)$ is a quasi BCC-subalgebra of $\mathbb{F}(X)$.

Given a fuzzy set μ in X and $\alpha \in (0, 1]$, we define two sets:

$$\mathbb{F}_{\alpha}(\mu) := \{ x_{\alpha} \in \mathbb{F}(X) \mid \mu(x) \ge \alpha \}$$

and

$$\mathbb{F}(\mu) := \bigcup_{\alpha \in (0,1]} \mathbb{F}_{\alpha}(\mu).$$

The following example shows that $\mathbb{F}_{\alpha}(\mu)$ may not be a fuzzy point BCC-subalgebra of $\mathbb{F}_{\alpha}(X)$ for some $\alpha \in (0, 1]$.

Example 3.4. Let $X = \{0, a, b, c, d\}$ be a set with the following Cayley table:

Y. B. Jun and S. Z. Song

*	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	0	0
b	b	b	0	0	a
c	c	b	a	0	a
d	d	$\begin{array}{c} 0 \\ 0 \\ b \\ b \\ d \end{array}$	d	d	0

Then (X, *, 0) is a proper BCC-algebra (see [3]). Consider a fuzzy set μ in X defined by $\mu(0) = 0.8$, $\mu(a) = 0.2$, $\mu(b) = 0.3$ and $\mu(c) = \mu(d) = 0.5$. Then $\mathbb{F}_{0.4}(\mu) = \{0_{0.4}, c_{0.4}, d_{0.4}\}$ is not a fuzzy point BCC-subalgebra of $\mathbb{F}_{0.4}(X)$ since $c_{0.4} \odot d_{0.4} = (c * d)_{0.4} = a_{0.4} \notin \mathbb{F}_{0.4}(\mu)$.

Lemma 3.5. If μ is a fuzzy BCC-subalgebra of X, then $\mathbb{F}_{\alpha}(\mu)$ is a fuzzy point BCC-subalgebra of $\mathbb{F}_{\alpha}(X)$ for every $\alpha \in (0, 1]$.

Proof. For any $\alpha \in (0, 1]$, let $x_{\alpha}, y_{\alpha} \in \mathbb{F}_{\alpha}(\mu)$. Then $\mu(x) \geq \alpha$ and $\mu(y) \geq \alpha$. Since μ is a fuzzy BCC-subalgebra of X, it follows that

$$\mu(x * y) \ge \min\{\mu(x), \, \mu(y)\} \ge \alpha$$

so that $x_{\alpha} \odot y_{\alpha} = (x * y)_{\alpha} \in \mathbb{F}_{\alpha}(\mu)$. Hence $\mathbb{F}_{\alpha}(\mu)$ is a fuzzy point BCC-subalgebra of $\mathbb{F}_{\alpha}(X)$.

Theorem 3.6. Let μ be a fuzzy set in X. If $\mathbb{F}_{\alpha}(\mu)$ is a fuzzy point BCC-subalgebra of $\mathbb{F}_{\alpha}(X)$ for every $\alpha \in (0, 1]$, then $\mathbb{F}(\mu)$ is a quasi BCC-subalgebra of $\mathbb{F}(X)$.

Proof. Let $x, y \in U(\mu; \beta)$, where $\beta \in (0, 1]$. Then $\mu(x) \ge \beta$ and $\mu(y) \ge \beta$, and so $x_{\beta}, y_{\beta} \in \mathbb{F}_{\beta}(\mu)$. Hence

$$(x*y)_{eta} = x_{eta} \odot y_{eta} \in \mathbb{F}_{eta}(\mu)$$

because $\mathbb{F}_{\beta}(\mu)$ is a fuzzy point BCC-subalgebra. It follows that $\mu(x * y) \geq \beta$ so that $x * y \in U(\mu; \beta)$. Thus $U(\mu; \beta)$ is a BCC-subalgebra of X. Now let $x_{\alpha}, y_{\beta} \in \mathbb{F}(\mu)$. Then $\mu(x) \geq \alpha \geq \min\{\alpha, \beta\}$ and $\mu(y) \geq \beta \geq \min\{\alpha, \beta\}$. Therefore $x, y \in U(\mu; \min\{\alpha, \beta\})$, and so $x * y \in U(\mu; \min\{\alpha, \beta\})$ since $U(\mu; \min\{\alpha, \beta\})$ is a BCC-subalgebra. It follows that $\mu(x * y) \geq \min\{\alpha, \beta\}$ so that

$$x_{\alpha} \odot y_{\beta} = (x * y)_{\min\{\alpha, \beta\}} \in \mathbb{F}(\mu).$$

Consequently, $\mathbb{F}(\mu)$ is a quasi BCC-subalgebra of $\mathbb{F}(X)$.

Theorem 3.7. Let μ be a fuzzy set in X such that $\mathbb{F}(\mu)$ is a quasi BCC-subalgebra of $\mathbb{F}(X)$. Then

- (i) μ is a fuzzy BCC-subalgebra of X.
- (ii) $0_{\alpha} \in \mathbb{F}(\mu)$ for all $\alpha \in \mathrm{Im}(\mu)$.

Proof. (i) Let $x, y \in X$ be such that $\mu(x) = 0$ or $\mu(y) = 0$. Then

$$\mu(x * y) \ge 0 = \min\{\mu(x), \, \mu(y)\}.$$

Since $x_{\mu(x)}, y_{\mu(y)} \in \mathbb{F}(\mu)$ for all $x, y \in X$ with $\mu(x) \neq 0 \neq \mu(y)$, we have

$$(x * y)_{\min\{\mu(x), \mu(y)\}} = x_{\mu(x)} \odot y_{\mu(y)} \in \mathbb{F}(\mu)$$

Hence $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$, and so μ is a fuzzy BCC-subalgebra of X.

(ii) Let $\alpha \in \text{Im}(\mu)$. Then there exists $x \in X$ such that $\mu(x) = \alpha$. Thus $x_{\alpha} \in \mathbb{F}(\mu)$, and so $0_{\alpha} = (x * x)_{\alpha} = x_{\alpha} \odot x_{\alpha} \in \mathbb{F}(\mu)$. This completes the proof. \Box

Remark. Let μ be a fuzzy set in X and $\alpha, \beta \in (0, 1]$ with $\alpha \geq \beta$. If $x_{\alpha} \in \mathbb{F}(\mu)$, then $x_{\beta} \in \mathbb{F}(\mu)$.

Definition 3.8. Let μ be a fuzzy set in X. Then $\mathbb{F}(\mu)$ is called a *quasi* BCC-*ideal* of $\mathbb{F}(X)$ if it satisfies

- $0_{\alpha} \in \mathbb{F}(\mu)$ for all $\alpha \in \mathrm{Im}(\mu)$,
- for all $x_{\alpha}, y_{\beta}, z_{\gamma} \in \mathbb{F}(X)$, $(x_{\alpha} \odot y_{\beta}) \odot z_{\gamma} \in \mathbb{F}(\mu)$ and $y_{\beta} \in \mathbb{F}(\mu)$ imply $x_{\min\{\alpha,\beta\}} \odot z_{\min\{\beta,\gamma\}} \in \mathbb{F}(\mu)$.

Example 3.9. Let X and μ be as in Example 3.4. Then the set

$$\mathbb{F}(\mu) := \{ 0_{\alpha} \mid \alpha \in (0, 0.8] \} \cup \{ a_{\beta} \mid \beta \in (0, 0.2] \} \cup \{ b_{\gamma} \mid \gamma \in (0, 0.3] \} \\
\cup \{ c_{\delta} \mid \delta \in (0, 0.5] \} \cup \{ d_{\epsilon} \mid \epsilon \in (0, 0.5] \}$$

is not a quasi BCC-ideal of $\mathbb{F}(X)$ because $(b_{0.5} \odot d_{0.4}) \odot d_{0.3} = 0_{0.3} \in \mathbb{F}(\mu)$ and $d_{0.4} \in \mathbb{F}(\mu)$, but

$$b_{\min\{0.5, 0.4\}} \odot d_{\min\{0.4, 0.3\}} = b_{0.4} \odot d_{0.3} = a_{0.3} \notin \mathbb{F}(\mu).$$

Example 3.10. Let $X = \{0, a, b, c, d, e\}$ be a set with the following Cayley table:

*	0	a	b	c	d	e
0	0	0	0	0	0	0
a	a	0	0	0	0	a
b	b	b	0	0	a	a
c	c	b	a	0	a	a
d	d	d	d	d	0	a
e	e	e	$\begin{array}{c} 0\\ 0\\ 0\\ a\\ d\\ e\\ \end{array}$	e	e	0

Then (X, *, 0) is a proper BCC-algebra (see [6]). Let μ be a fuzzy set in X defined by $\mu(e) = 0.3$ and $\mu(x) = 0.5$ for all $x \neq e$. Then μ is a fuzzy BCC-ideal of X, and the set

$$\mathbb{F}(\mu) = \{0_{\alpha}, a_{\beta}, b_{\gamma}, c_{\delta}, d_{\epsilon} \mid \alpha, \beta, \delta, \gamma, \epsilon \in (0, 0.5]\} \cup \{e_{\rho} \mid \rho \in (0, 0.3]\}$$

is a quasi BCC-ideal of $\mathbb{F}(X)$.

Theorem 3.11. Let μ be a fuzzy set in X. Then μ is a fuzzy BCC-ideal of X if and only if $\mathbb{F}(\mu)$ is a quasi BCC-ideal of $\mathbb{F}(X)$.

Proof. Assume that μ is a fuzzy BCC-ideal of X. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, we have $\mu(0) \ge \alpha$ for all $\alpha \in \operatorname{Im}(\mu)$. Hence $0_{\alpha} \in \mathbb{F}(\mu)$. Let $x_{\alpha}, y_{\beta}, z_{\gamma} \in \mathbb{F}(X)$ be such that $(x_{\alpha} \odot y_{\beta}) \odot z_{\gamma} \in \mathbb{F}(\mu)$ and $y_{\beta} \in \mathbb{F}(\mu)$. Then $\mu((x * y) * z) \ge \min\{\alpha, \beta, \gamma\}$ and $\mu(y) \ge \beta$. Since μ is a fuzzy BCC-ideal, it follows that

$$\mu(x * z) \geq \min\{\mu((x * y) * z), \mu(y)\}$$

$$\geq \min\{\min\{\alpha, \beta, \gamma\}, \beta\}$$

$$= \min\{\alpha, \beta, \gamma\}$$

so that

$$x_{\min\{\alpha,\beta\}} \odot z_{\min\{\beta,\gamma\}} = (x * z)_{\min\{\min\{\alpha,\beta\},\min\{\beta,\gamma\}\}}$$

= $(x * z)_{\min\{\alpha,\beta,\gamma\}} \in \mathbb{F}(\mu).$

Conversely, suppose that $\mathbb{F}(\mu)$ is a quasi BCC-ideal of $\mathbb{F}(X)$. Obviously $\mu(0) \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$ be such that $\mu((x * y) * z) = \alpha$ and $\mu(y) = \beta$. Then $y_{\beta} \in \mathbb{F}(\mu)$ and

$$(x_{\alpha} \odot y_{\beta}) \odot z_{\alpha} = ((x * y) * z)_{\min\{\alpha, \beta\}} \in \mathbb{F}(\mu).$$

Since $\mathbb{F}(\mu)$ is a quasi BCC-ideal, it follows that

$$(x * z)_{\min\{\alpha,\beta\}} = x_{\min\{\alpha,\beta\}} \odot y_{\min\{\alpha,\beta\}} \in \mathbb{F}(\mu)$$

so that $\mu(x * z) \ge \min\{\alpha, \beta\} = \min\{\mu((x * y) * z), \mu(y)\}$. Hence μ is a fuzzy BCC-ideal of X

Acknowledgements. The authors are highly grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

- W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica, 20(1992), 129–136.
- [2] W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica, 20(1992), 137–150.
- [3] W. A. Dudek, Subalgebras in finite BCC-algebras, Bull. Inst. Math. Acad. Sinica, 28(2000), 201–206.
- W. A. Dudek and Y. B. Jun, *Fuzzy* BCC-*ideals in* BCC-*algebras*, Mathematica Montisnigri, 10(1999), 21–30.

- [5] W. A. Dudek, Y. B. Jun and Z. Stojaković, On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems, 123(2001), 251–258.
- W. A. Dudek and X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J., 48(123)(1998), 21–29.
- [7] J. Hao, Ideal theory of BCC-algebras, Scientiae Mathematicae, 1(3)(1998), 373–381.
- [8] Y. Imai and K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19–22.
- [9] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29(1984), 391–394.
- [10] A. Wroński, BCK-algebras do not form a variety, Math. Japon., 28(1983), 211–213.