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Abstract. We introduce the notions of nilpotent element, quasi-regular element in a

semiring which is a distributive lattice of rings. The concept of Jacobson radical is intro-

duced for this kind of semirings.

1. Introduction

Recall that a semiring (S, +, ·) is a type (2, 2) algebra whose semigroup reducts
(S, +) and (S, ·) are connected by distributivity, that is, a(b + c) = ab + ac and
(b + c)a = ba + ca for all a, b, c ∈ S. We call a semiring (S, +, ·) additive regular
if for every element a ∈ S there exists an element x ∈ S such that a + x + a = a.
Additive regular semirings were first studied by J. Zeleznekow [6] in 1981. We call
a semiring (S, +, ·) an additive inverse semiring if (S,+) is an inverse semigroup,
i.e., for each a ∈ S there exists a unique element a′ ∈ S such that a + a′ + a = a
and a′ + a + a′ = a′. Additive inverse semirings were first studied by Karvellas [4]
in 1974.

Throughout this paper, E+(S) will always denote the set of all additive idem-
potents of the semiring S. As usual, we denote the Green’s relations on the semiring
(S, +, ·) by L, R, D, J and H and correspondingly, the L-relation, R-relation, D-
relation, J -relation and H-relation on (S, +) are denoted by L+, R+, D+, J + and
H+, respectively. In fact, the relations L+, R+, D+, J + and H+ are all congruence
relations on the multiplicative reduct (S, ·). Thus if any one of them is a congruence
on (S, +), then it will be a congruence on the semiring (S, +, ·). For any a ∈ S, let
J+

a be the J +-class in (S, +) containing a. A subsemiring I of a semiring (S, +, ·)
is called an ideal of S if SI, IS ⊆ I. An ideal I is called a full ideal if E+(S) ⊆ I.
Furthermore, an ideal I of a semiring S is called a k-ideal of S if a ∈ I and either
a + x ∈ I or x + a ∈ I for some x ∈ S imply x ∈ I.

We now give the following definitions in an additive inverse semiring.

Definition 1.1. Let S be an additive inverse semiring. An element a ∈ S is called
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nilpotent if there exists a positive integer n such that an = a + a′.
Naturally, we call an additive inverse semiring S a nilpotent semiring if every

element of the additive inverse semiring S is nilpotent.
We can easily verify that the direct product of a nilpotent ring and a distributive

lattice is a nilpotent semiring.

Definition 1.2. An ideal I of an additive inverse semiring S is called nil if every
element of I is nilpotent.

Definition 1.3. An ideal I of an additive inverse semiring is called nilpotent if
there exists a positive integer n such that In = E+(S).

Example 1.4. We consider the semiring S = Z4 × D, where D is a distributive
lattice. Then I = {[0], [2]} ×D is a non-trivial nilpotent ideal of S.

Remark 1.5. It is remarkable to note that similar to ring theory one can easily
verify that every nilpotent ideal of an additive inverse semiring is nil. But the
converse is not true in general. For this let D be a distributive lattice, R be a ring
and I be an ideal of R such that I is nil but not nilpotent. Then I×D is a nil ideal
of the additive inverse semiring S = R×D but I ×D is not a nilpotent ideal of S.

In section 2, we study those additive inverse semirings which are distributive
lattices of skew-rings.

In section 3, we define quasi-regular elements, quasi-regular ideals and regular
ideals in a semiring. Finally, we show that for an additive inverse semiring S which
is a distributive lattice of rings, the intersection of all regular ideals is a quasi-regular
ideal.

In section 4, we define the Jacobson radical of a semiring. We introduce the
concepts of semisimple semiring and Artinian semiring in this section. We show
that in an Artinian semiring S, the Jacobson radical is a nilpotent ideal of S.

2. Distributive lattices of skew-rings

According to M. P. Grillet [3], a semiring (S, +, ·) is called a skew-ring if its
additive reduct (S, +) is a group.

Next we give the following definition.

Definition 2.1. A congruence ρ on a semiring S is called a distributive lattice
congruence if S/ρ is a distributive lattice. A semiring S is called a distributive
lattice D of skew-rings Rα(α ∈ D) if S admits a distributive lattice congruence ρ
on S such that D = S/ρ and each Rα is a ρ-class.

We now give the necessary and sufficient condition such that a semiring becomes
a distributive lattice of skew-rings.

Theorem 2.2. A semiring S is a distributive lattice of skew-rings if and only if S
is an additive inverse semiring satisfying the following conditions:
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(i) a + a′ = a′ + a,

(ii) a(a + a′) = a + a′,

(iii) a(b + b′) = (b + b′)a, and

(iv) a + a(b + b′) = a for all a, b ∈ S.

Proof. First, assume that (S, +, ·) is an additive inverse semiring satisfying the
given conditions. Then (S, +) is completely regular semigroup and hence we find
from Theorem II.1.4. in [5] that (S,+) is semilattice (Y, +) of completely simple
semigroups (Sα,+), where Y = S/J + and J + is a congruence on the semiring S.
We first show that each Sα is a skew-ring. Let a ∈ S. Then a = a + a′ + a =
a(a + a′) + a = aa′ + a2 + a and a2 = a(a + a′ + a) = a + a′ + a2 = a′ + a + a2.
Thus a2J +a. Let b, c ∈ J+

a . Then bJ +a and cJ +a. Hence bcJ +a2J +a. Thus
(Sα, +, ·) is a semiring. Let e, f ∈ Sα be two additive idempotents. Then eJ +f .
Since (Sα, +) is a completely simple semigroup, we have that J + = D+ on Sα. So
eD+f and hence there exists an element x ∈ Sα such that eL+x and xR+f . Since
(S, +) is an inverse semigroup, we have e = x + x′ = f and hence (Sα, +, ·) is a
skew-ring.

Now ab = a(b+b′+b) = a(b+b′)+ab = (b+b′)a+ab = b′a+ba+ab. Similarly,
ba = a′b+ab+ ba. Thus, abJ +ba. Again a = a+a(b+ b′) = (a+a′)+a+ab+(ab′)
and a + ab = (a + a′) + a + (ab). Hence a + abJ +a. Thus, J + is a distributive
lattice congruence on S. Consequently, S is a distributive lattice of skew-rings.

Conversely, if a semiring S is a distributive lattice of skew-rings then one can
easily show that it is an additive inverse semiring such that the given conditions
(i)-(iv) are satisfied. Thus the proof is completed. ¤

Corollary 2.3. Let S be an additive commutative semiring. S is a distributive
lattice of rings if and only if it is an additive inverse semiring satisfying the following
conditions:

(i) a(a + a′) = a + a′,

(ii) a(b + b′) = (b + b′)a, and

(iii) a + a(b + b′) = a for all a, b ∈ S.

Example 2.4. Let S = {0, a, b} be a semiring with the following Cayley tables:

+ 0 a b

0 0 a b
a a 0 b
b b b b

· 0 a b

0 0 0 0
a 0 0 0
b 0 0 b

Then we can easily see that the additive reduct (S, +) is a commutative inverse
semigroup. Also we can show that for all a, b ∈ S, we have
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(i) a(a + a′) = a + a′,

(ii) a(b + b′) = (b + b′)a, and

(iii) a + a(b + b′) = a.

Hence S is a distributive lattice of rings.

3. Quasi-regular ideals

Throughout the rest of the paper, S is going to denote an additive commutative
semiring which is a distributive lattice of rings.

Definition 3.1. Let S be a semiring and a ∈ S. If there exists an element b ∈ S
such that a = b′ + ab, a is said to be right quasi-regular and that b is a right quasi-
inverse of a. Left quasi-inverse elements are defined similarly. The element a is said
to be quasi-regular if it is both left quasi-regular and right quasi-regular.

Definition 3.2. A right ideal (left ideal or ideal resp.) in S is said to be right
quasi-regular (left quasi-regular or quasi-regular resp.) if each of its elements is
right quasi-regular (left quasi-regular or quasi-regular resp.)

We now proceed to establish several lemmas which will be useful in the sequel.
We now observe that if an element of S has a right quasi-inverse and left quasi-

inverse then these inverses are equal.

Lemma 3.3. If an element a of S has a right quasi-inverse b and also a left quasi-
inverse c, then b = c.

Proof. Since b is right quasi inverse of a, we have a = b′+ab. Similarly, a = c′+ ca.
Hence b′ = a + a′b and c′ = a + c′a.

Now
b′ = a + a′b

= a + ab′

= a + (c′ + ca)b′

= a + c′b′ + cab′

= a + c′(a + ab′) + cab′

= a + c′a + c′ab′ + cab′

= a + c′a + cab + cab′

= c′ + cab + cab′

= c′.

Hence b = c. ¤

Lemma 3.4. Every nilpotent element of a semiring S is quasi-regular.

Proof. Let a be a nilpotent element in S. Then there exists a positive integer n
such that an = a + a′. Let b = a′ + (a2)′ + · · ·+ (an−1)′.
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Now

b′ + ab = a + a2 + · · ·+ an−1 + aa′ + a(a2)′ + · · ·+ a(an−1)′

= a + a2 + · · ·+ an−1 + aa′ + a2a′ + · · ·+ an−2a′ + (an)′

= a + a(a + a′) + a2(a + a′) + · · ·+ an−2(a + a′) + (a + a′)′

= a.

Similarly, we have that b′ + ba = a. Hence a is quasi-regular. ¤

Lemma 3.5. An element a of the semiring S is right quasi-regular if and only if
the right ideal A = {x + (ax)′ : x ∈ S} coincides with S.

Proof. First, let A = S. Then there exists a y such that a = y+(ay)′ = (y′)′+(ay′) =
z′ + az (where y′ = z) and hence a is right quasi-regular.

Conversely, let a be a right quasi-regular element in a semiring S. Then there
exists a y ∈ S such that a = y′+ay. Then for any x ∈ S we have ax = y′x+ayx =
(y′x) + (ay′x)′ and hence ax ∈ A. But x + (ax)′ ∈ A. Clearly A is a right ideal of
S. Thus x + (ax)′ + ax ∈ A, i.e., x ∈ A. Hence S ⊆ A and therefore A = S. ¤

Lemma 3.6. If a, b ∈ S and ab is right quasi-regular, then ba is also right quasi-
regular.

Proof. Since ab is right quasi-regular, there exists an element c ∈ S such that
ab = c′ + abc. Let d = b′a + bca.

Now
d′ + bad = ba + bc′a + ba(b′a + bca)

= ba + bab′a + bc′a + babca
= ba + bab′a + b(c′ + abc)a
= ba + bab′a + baba
= ba

Hence ba is right quasi-regular. ¤

Lemma 3.7. Let A be a right ideal of S such that a′ ∈ A for every a ∈ A. If A is
right quasi-regular, then it is quasi-regular.

Proof. Let a ∈ A. Then there exists an element b ∈ A such that a = b′+ab, i.e., b′ =
a + ab′. Thus b′ ∈ A and hence b ∈ A. Now from b′ = a + ab′ we have b = a′ + ab.
So b has a left quasi-inverse a. Applying the same argument to b, we deduce that b
has a right quasi-inverse c. Hence by Lemma 3.3, we have a = c.

Now, b = c′ + bc = a′ + ba gives a′ = b + b′a, i.e., a = b′ + ba. Hence a has b as
left quasi-inverse. Consequently, a is quasi-regular. ¤

Definition 3.8. A right ideal I of a semiring S is said to be regular if there exists
an element e ∈ S such that r + (er)′ ∈ I for all r ∈ S. Similarly, a left ideal
I of semiring S is said to be regular if there exists an element e ∈ S such that
r + (re)′ ∈ I for all r ∈ S.

Lemma 3.9. If I is a regular right ideal of a semiring S, then I is contained in a
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maximal right ideal which is regular.

Proof. Since I is a regular right ideal, there exists an element e ∈ S such that
r + (er)′ ∈ I for all r ∈ S. Thus any right ideal J containing I is also regular (with
the same element e). If e ∈ J , then er ∈ J and r + (er)′ ∈ J for all r ∈ S gives
r = r + (er)′ + er ∈ J , whence J = S.

Let C = {J : J is a regular right ideal of S such that I ⊆ J and e 6∈ J}.
Then C is a partially ordered set under set inclusion relation. Applying Zorn’s
lemma, we have a maximal element K in C. Then K is a maximal right ideal of S
containing I which is regular. ¤

Example 3.10. We consider the ring of integers Z and let D be a distributive
lattice. Then 3Z × D is a regular maximal ideal of Z × D. But 3Z × D is not a
quasi-regular ideal. ¤

Theorem 3.11. Let S be a semiring and K be the intersection of all regular
maximal right ideals of S. Then K is a quasi-regular right ideal of S.

Proof. Clearly, K is a right ideal of S. Given an a ∈ K, let T = {r + (ar)′ : r ∈ S}.
We must show T = S.

Clearly, T is a regular right ideal of S. If T 6= S, then by Lemma 3.9, T is
contained in a regular maximal right ideal I0. Since a ∈ T ⊆ I0, ar ∈ I0 for all
r ∈ S. Again from r + (ar)′ ∈ T ⊆ I0, we must have r = r + (ar)′ + ar ∈ I0 for
all r ∈ S. Consequently, S = I0, which contradicts the maximality of I0. Therefore
T = S and a is right quasi-regular by Lemma 3.5. Hence, K is a quasi-regular right
ideal of S. ¤

4. The Jacobson radical

Definition 4.1. The Jacobson radical J(S) of a semiring S is defined as follows:

J(S) = {a ∈ S : aS is right quasi-regular}.
Furthermore, if I is an ideal of a semiring S, then the Jacobson radical of I is
defined by

J(I) = {a ∈ I : aI is right quasi-regular}.
It is important to keep in mind that, in view of Lemma 3.7, this is equivalent to
require that aS be quasi-regular in the definition of J(S).

Theorem 4.2. J(S) is a quasi-regular ideal in S which contains every quasi-regular
right ideal and every quasi-regular left ideal in S.

Proof. First we show that J(S) is an ideal of S. Let a ∈ J(S) such that aS is
right quasi-regular. Then for each x ∈ S, we have (ax)S ⊆ aS, so (ax)S is right
quasi-regular and ax ∈ J(S). Now for each x, y ∈ S, it follows from what we have
just proved that ayx is right quasi-regular and Lemma 3.6 shows that xay is right
quasi-regular. That is, (xa)S is right quasi-regular and xa ∈ J(S). Let a, b ∈ J(S).
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We show that (a + b) ∈ J(S). If x ∈ S then ax is right quasi-regular. Suppose
that ax has r1 as right quasi-inverse so that ax = r′

1
+ axr1 . Since b ∈ J(S),

b(x+x′r1) is right quasi-regular and hence there exists an element r2 ∈ S such that
b(x + x′r1) = r′

2
+ b(x + x′r1)r2 . Let z = r1 + r2 + r′

1
r2 . Then

z′ + (ax + bx)z = (r1 + r2 + r′
1
r2)

′ + (ax + bx)(r1 + r2 + r′
1
r2)

= r′
1
+ r′

2
+ r′

1
r′
2
+ axr1 + axr2 + axr′

1
r2 + bxr1 + bxr2 + bxr′

1
r2

= ax + b(x + x′r1) + (r′
1
+ axr1)r

′
2
+ axr2 + bxr1

= ax + bx + bx′r1 + axr′
2
+ axr2 + bxr1

= ax + bx

= (a + b)x.

This proves that (a + b)S is right quasi-regular and hence a + b ∈ J(S). Therefore
J(S) is an ideal of S.

We now show that J(S) is right quasi-regular. Let a ∈ J(S). Then aS is
right quasi-regular. So in particular a2 is right quasi-regular. Hence there exists an
element c ∈ S such that a2 = c′ + a2c. Let d = a′ + c + ac. Then

d′ + ad = a + c′ + a′c + a(a′ + c + ac)
= a + c′ + a′c + aa′ + ac + a2c

= a + c′ + aa′ + a2c

= a + aa′ + a2

= a + a + a′

= a.

Hence a is right quasi-regular and thus J(S) is right quasi-regular ideal of S.
Again for all a ∈ J(S), we have a′ ∈ J(S). Hence by Lemma 3.7, we have J(S) is
quasi-regular.

If A is a quasi-regular right ideal of S and a ∈ A, then aS ⊆ A and by definition
of J(S) we have a ∈ J(S). Hence A ⊆ J(S).

If A is a quasi-regular left ideal of S and a ∈ A, then Sa ⊆ A and Sa is right
quasi-regular. By Lemma 3.6, we have aS is right quasi-regular and hence a ∈ J(S).
Thus A ⊆ J(S). This completes the proof of the theorem. ¤

The following result is an immediate consequence of Lemma 3.4.

Corollary 4.3. J(S) contains every nil right (left) ideal in S.

We now prove an interesting theorem.

Theorem 4.4. J(S) is a k-ideal of S.

Proof. We have already proved that J(S) is an ideal of S. To complete the proof,
let a + b, b ∈ J(S). Hence a + b, b′ ∈ J(S) and a + b + b′ ∈ J(S). So (a + b + b′)S
is right quasi-regular. Let x ∈ S. Then (a + b + b′)xax is right quasi-regular,
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i.e., (ax)2 + (bx + bx′)ax is right quasi-regular. Let c = ax and d = bx. Then
c2 + (d + d′)c is right quasi-regular. Hence there exists an element z ∈ S such that
c2 + (d + d′)c = z′ + (c2 + dc + d′c)z. Let y = c′ + z + cz.

Then
y′ + cy = c + z′ + c′z + cc′ + cz + c2z

= c + cc′ + z′ + c2z
= c + cc′ + z′ +

(
c2 + (d + d′)c2

)
z

= c + cc′ + z′ +
(
c2 + (d + d′)c

)
z

= c + cc′ + c2 + (d + d′)c
= c.

Hence c = ax is right quasi-regular for all x ∈ S. Thus aS is right quasi-regular
and hence a ∈ J(S). Consequently, J(S) is a k-ideal of S. ¤

It is worth to note that since every additive idempotent is quasi-regular we have
E+(S) ⊆ J(S) and hence S/J(S) is a ring.

Definition 4.5. A semiring S is called semisimple semiring if J(S) = E+(S).

Theorem 4.6. If J(S) is the Jacobson radical of the semiring S, then J
(
S/J(S)

)
=

{0}.
Proof. Let a+J(S) ∈ J

(
S/J(S)

)
. Then for any x ∈ S we have (a+J(S))(x+J(S))

is right quasi-regular i.e., ax + J(S) is right quasi-regular. Hence there exists an
element s + J(S) such that (ax + J(S)) + (s + J(S)) = (ax + J(S))(s + J(S)),
i.e., ax + s + a′xs ∈ J(S), i.e., (ax + s + a′xs)ax is right quasi-regular. Then by
Lemma 3.6, ax(ax+s+a′xs) is right quasi-regular, i.e., (ax)2+axs+axa′xs is right
quasi-regular. Then there exists an element z ∈ S such that (ax)2 +axs+axa′xs =
z′ + (ax)2z + axsz + axa′xsz. Let y = z + a′x + axz + axs + a′xsz.

Then

y′ + (ax)y = z′ + ax + a′xz + axs′

+axsz + axz + axa′x + axaxz + axaxs + axa′xsz
= z′ + ax(z + z′) + ax + axs′

+axa′x + axsz + axaxz + axaxs + axa′xsz
= z′ + ax + axs′ + axa′x + (ax)2z + axsz + axaxs + axa′xsz
= ax + axs′ + axa′x + axaxs + (ax)2 + axs + axa′xs
= ax.

Hence ax is right quasi-regular for all x ∈ S. Hence aS is right quasi-regular.
Consequently, a ∈ J(S) and J

(
S/J(S)

)
= {0}. ¤

Corollary 4.7. If a ∈ S such that SaS ⊆ J(S), then a ∈ J(S).

Proof. Let x ∈ S. Then (ax)2 ⊆ (aS)2 ⊆ J(S). Hence (ax)2 is right quasi-regular
and thus ax is right quasi-regular. Consequently, a ∈ J(S). ¤

Theorem 4.8. If I is an ideal in the semiring S such that a′ ∈ I for all a ∈ I,
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then J(I) = I ∩ J(S).

Proof. Suppose, first, a ∈ I ∩ J(S). Since a ∈ J(S), ax is right quasi-regular for
each x ∈ S and there exists y ∈ S such that ax = y′ + axy, i.e., y′ = ax + axy′ and
hence y = ax′ + axy ∈ I. In particular aI is right quasi-regular in the semiring I
and therefore a ∈ J(I). This shows that I ∩ J(S) ⊆ J(I).

Conversely, suppose that a ∈ J(I). Since (aS)2 ⊆ aI, (aS)2 is a quasi-regular
right ideal in S and hence (aS)2 ⊆ J(S). Let x ∈ S. Then (ax)2 ∈ (aS)2 ⊆ J(S)
shows that (ax)2 is quasi-regular and hence ax is quasi-regular for every x ∈ S.
Thus, a ∈ J(S) and J(I) ⊆ I ∩ J(S) and the proof is completed. ¤

Definition 4.9. An additive inverse semiring S is called an Artinian semiring if
any descending chain of full ideals of S terminates i.e., for any descending chain of
full ideals I1 ⊇ I2 ⊇ · · · . there exists a positive integer n such that In = In+1 =
In+2 = · · · .

We can easily prove that a semiring S is Artinian if and only if any non empty
collection of full ideals contains a minimal element.

Theorem 4.10. If S is an Artinian semiring then the Jacobson radical J(S) is a
nilpotent ideal of S. Consequently, every nil left (right) ideal of S is nilpotent and
J(S) is the unique maximal nilpotent ideal of S.

Proof. We consider the descending chain of full ideals

J(S) ⊇ (J(S))2 ⊇ (J(S))3 ⊇ . . . .

Since S is Artinian, there exists a positive integer n such that (J(S))n = (J(S))n+1

= . . . . Let I = (J(S))n. Then I ⊆ J(S) and I2 = I. Clearly, E+(S) ⊆ I. To
complete the proof it suffices to show that I ⊆ E+(S). Assume that I 6⊆ E+(S)
and consider the collection

C = {J : J is a full ideal of S such that J ⊆ I and JI 6⊆ E+(S)}
Then C 6= ∅, since I ∈ C. Hence C has a minimal element K. So KI 6⊆ E+(S). Hence
aI 6⊆ E+(S) for some non additive idempotent a ∈ K. Thus (aI + E+(S))I ⊆ aI +
E+(S)I ⊆ aI+E+(S) 6⊆ E+(S) with aI+E+(S) ⊆ K ⊆ I. Hence aI+E+(S) = K
by the minimality of K. So there exist elements b ∈ I and e ∈ E+(S) such that
a = ab + e. But b ∈ I ⊆ J(S). So there exists c ∈ S such that b = c′ + bc.

Now a = ab + e = ac′ + abc + e = (ab + e)c′ + abc + e = abc′ + ec′ + abc +
e = ab(c + c′) + e ∈ E+(S). Therefore aI ⊆ E+(S), contradicting the fact that
aI 6⊆ E+(S). Hence I = (J(S))n ⊆ E+(S), as required. ¤

Theorem 4.11. Every regular maximal right ideal of S is a full right k-ideal of S.

Proof. Let A be a regular maximal right ideal of S. Since A is regular there
exists an element e ∈ S such that r + (er)′ ∈ A for all r ∈ S. Clearly, A is
a full ideal and e 6∈ A. Let a, a + b ∈ A. We show that b ∈ A. Assume that
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b 6∈ A and consider the right ideal A1 =< A, b >r, the smallest ideal generated
by A and b. Then A

⊂
6=A1. Since A is maximal we have A1 = S. Then e = c + bt

for some c ∈ A and t ∈ S. Now, from a, a + b ∈ A we have btb ∈ A. Now
b = b + (eb)′ + eb = b + (eb)′ + (c + bt)b = b + (eb)′ + cb + btb ∈ A, a contradiction
to our assumption that b 6∈ A. Hence b ∈ A and hence A is a full k-ideal of S. ¤

Definition 4.12. Let S be a semiring and A, a non-empty subset of S. We define
(A : S) as (A : S) = {r ∈ S : Sr ⊆ A}.

It should be noted that if A is a right k-ideal of S then (A : S) is a k-ideal of
S. Thus if A is a maximal regular right ideal of S then (A : S) is a full k-ideal of
S and hence S/(A : S) is a ring.

Lemma 4.13. If A is a regular maximal right ideal of S, then J(S) ⊆ (A : S).

Proof. Let a ∈ J(S). We show that a ∈ (A : S). If possible let a 6∈ (A : S).
Then xa 6∈ A for some x ∈ S. We consider A1 = A + xJ(S). Then A1 is a
right ideal of S such that A ⊆ A1 and xa ∈ A1. Hence A

⊂
6=A1. Therefore, A1 =

S. This implies x = a1 + xb for some a1 ∈ A and b ∈ J(S). This leads to
a1 + xb + x′ = x + x′ ∈ A. Also, a1 ∈ A. Since A is a right k-ideal so xb + x′ ∈ A.
Let xb + x′ = a2. Now b ∈ J(S) implies there exists an element c ∈ S such
that b = c′ + bc. Hence xb = x(c′ + bc) = xc′ + xbc = (x′ + xb)c = a2c. Then
xa = (a1 + xb)a = a1a + xba = a1a + a2ca ∈ A, a contradiction. This contradiction
leads to a ∈ (A : S). Consequently, J(S) ⊆ (A : S). ¤

Lemma 4.14. If a ∈ S and a is not right quasi-regular, there exists a regular
maximal right ideal A of S such that a 6∈ A.

Proof. Since a is not right quasi-regular, the right ideal B = {r + (ar)′ : r ∈ S}
does not contain a. Clearly, B is a regular right ideal.

Let C = {I : I is a regular right ideal of S such that a 6∈ I}. Clearly, C 6= ∅, since
B ∈ C. By Zorn’s Lemma, C has a maximal element A and hence A is a regular
maximal right ideal of S such that a 6∈ A. ¤

Lemma 4.15. If b ∈ S such that b 6∈ J(S), then there exists a regular maximal
right ideal of S which does not contain b.

Proof. Since b 6∈ J(S), there exists t ∈ S such that bt is not right quasi-regular.
Hence by Lemma 4.14, there is a regular maximal right ideal A such that bt 6∈ A.
Hence b 6∈ A as required. ¤

Theorem 4.16. Let S be a semiring such that S 6= J(S) and let {Ai}i∈Λ be the
family of all regular maximal right ideal of S. Then

(a) J(S) =
⋂

i∈Λ

Ai,

(b) J(S) =
⋂

i∈Λ

(Ai : S).
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Proof. (a) By Theorem 3.11 and Theorem 4.2, it follows that
⋂

i∈Λ

Ai ⊆ J(S). Now

by Lemma 4.13, J(S) ⊆ (Ai : S) for each i ∈ Λ. Thus, J(S) ⊆
⋂

i∈Λ

(Ai : S) and

hence SJ(S) ⊆ Ai for each i ∈ Λ. Since each Ai is regular, it follows that J(S) ⊆ Ai

for each i ∈ Λ and therefore that J(S) ⊆
⋂

i∈Λ

Ai.

(b) Since Ai is regular,
⋂

i∈Λ

(Ai : S) ⊆
⋂

i∈Λ

Ai = J(S). Also, J(S) ⊆ (Ai : S) for

every i ∈ Λ. Hence J(S) ⊆
⋂

i∈Λ

(Ai : S). Thus J(S) =
⋂

i∈Λ

(Ai : S). ¤
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