
A Novel Grounded Inductor Realization Using a 

In this study, we present a new topology for realizing a 
grounded inductor employing only a single current 
conveyor, called a negative-type modified inverting 
second-generation current conveyor (MICCII-), and a 
minimum number of passive components, two resistors, 
and one capacitor. The non-ideality effects of the MICCII- 
on a simulated inductor are investigated. To demonstrate 
the performance of the presented inductance simulator, 
we use it to construct a third order Butterworth high-pass 
filter and a parallel resonant circuit. Simulation results are 
given to confirm the theoretical analysis. 
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I. Introduction 

Minimum Number of Active and Passive Components 

Erkan Yuce, Shahram Minaei, and Oguzhan Cicekoglu 

Monolithic Si spiral inductors suffer from substrate resistive 
losses and capacitive couplings. In addition, process tolerances 
lead to component variations, which cannot easily be tuned in 
the passive case [1]. Thus active circuits, which simulate the 
characteristic of a passive inductor, have received considerable 
attention. This is attributed to their effective use of space, 
weight, cost, tunability, integrability, and the wide range of 
applications of such inductors especially when the value of the 
required inductance is relatively large. The most famous 
inductance simulator was proposed by Antoniou [2] and 
utilizes two op-amps and five passive elements to obtain a pure 
inductance. However, as an active element, a current conveyor 
(CC) provides many advantages such as greater linearity, wider 
bandwidth, and better dynamic range compared to the voltage 
mode counterparts, op-amps [3]. 

Many CC-based grounded synthetic inductor topologies 
have been proposed in the literature [4]-[15]. These topologies 
can be classified based on the number of active and passive 
elements employed and whether they realize a lossy or lossless 
kind of inductor. Most of these circuits employ two or more 
CCs to realize grounded inductance [6]-[8], [10]-[12], and [15]. 
The proposed topologies in [4], [9], [13], and [14] employ a 
single CC but they do not realize pure inductance. Although the 
circuit reported in [5] realizes pure inductance with only one 
positive type second-generation current conveyor (CCII+), it 
employs five passive elements. 

On the other hand, new types of CCs such as the inverting 
second-generation current conveyor (ICCII) [16] have been 
proposed in the literature. Such kinds of current conveyors give 
a higher degree of freedom to analog designers, with respect to 
op-amp and CCII solutions, allowing the implementation of 
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more functions using less active elements. A circuit with a 
minimum number of components is expected to simplify the 
design. 

In this paper, we propose a grounded inductance simulator 
employing a minimum number of active and passive 
components including one modified inverting second-
generation current conveyor (MICCII), two resistors, and one 
capacitor. The proposed topology ideally provides lossless 
inductor realization. By taking non-idealities of the MICCII 
(due to current and voltage gain) into account, several kinds of 
grounded immitances can be obtained. Finally, using the 
proposed grounded inductance simulator, a third-order 
Butterworth high-pass ladder filter and a parallel resonant 
circuit is constructed. Frequency domain and time domain 
responses are given to illustrate the performance of the 
proposed circuit. 

II. Proposed Circuit 

A symbolic representation of the MICCII is shown in Fig.1. 
The MICCII can be characterized by the following matrix 
equation 
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where α and β represent the non-ideal current and voltage 
gains of the current conveyor (ideally equal to unity), 
respectively. 
 

 

Fig. 1. Symbol of the MICCII-. 

Vy 

Vx 

Iy 

Ix 

Iz
Vz

Y 

X 

MICCII- Z 

 

 
Conventionally, the + or - signs of α in (1) denote the 

positive (MICCII+) and negative (MICCII−) type conveyors. 
The proposed grounded inductor is shown in Fig. 2. It uses 

one MICCII− and three passive elements. To find the input 
admittance of the circuit, a voltage source Vin is connected to 
the X-terminal of the current conveyor of the proposed circuit. 
For the Y, X and Z terminals of the MICCII−, we can write 

32 )( yVVyV yzy −= ,               (2a) 

xzxin IyVVI +−= 1)( ,               (2b) 

and 

31 )()( yVVyVVI yzxzz −+−=− ,         (2c) 

respectively. Using the terminal characteristic equation of the 
MICCII- given in (1) and (2a) through (2c), we can obtain the 
following admittance: 
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If y1=G, y2=2G, and y3=sC in (3) are chosen, the following 
impedance is obtained: 
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Hence, 

2G
CLeq = .                   (5) 

Thus, a lossless grounded inductor is realized using a 
minimum number of passive and active components. 
 

 

Fig. 2. The proposed inductor realization using MICCII- and 
passive components. 
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III. Non-ideality Effects 

Taking into account the non-idealities given in (1), the 
equivalent non-ideal impedance of the circuit is found to be 
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From (6), the admittance of the circuit is calculated as 
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Therefore, the circuit simulates an inductor in parallel with a 
resistor calculated as
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In this case, the quality factor of the inductor is found to be 
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Note that one can change the α parameter of MICCII- by 
adjusting bias voltages of the MICCII-, so considering β=1 and 
α as a variable, five types of inductors can be obtained:  

a) For α>1, a lossless inductor in parallel with a positive 
resistance is obtained. 

b) For α = 1, a pure (lossless) inductor as described in section 
II is realized.  

c) For 0.5<α<1, a lossless inductor in parallel with a 
negative resistor is obtained. 

d) For 0<α<0.5, a negative inductor in parallel with a 
negative resistor is obtained. 

e) For α <0, a lossless inductor in parallel with a positive 
resistor is obtained. In this case, the MICCII- is converted 
to a MICCII+. 

IV. Simulations 

The MICCII- is constructed using the schematic 
implementation in Fig. 3 with DC supply voltages equal to 
±2.5 V and bias voltages equal to VB=– 0.604 V and VC=– 0.25 
V. The simulations are performed using SPICE based on 0.35 µm 
Taiwan Semiconductor Manufacturing Company, Ltd. 
(TSMC) CMOS technology tabulated in Table 1. The 
dimensions of the MOS transistors used in the MICCII- 
implementation are given in Table 2. To investigate what is the 
frequency range for the designed MICCII-, AC simulations 
have been performed. The Iz/Ix and Vx/Vy frequency responses 
of the MICCII- are depicted in Fig. 4. The α and β values of 
the MICCII- are found to be 1.02 and 0.967, respectively. The 
frequency behavior reported in Fig. 4 suggests that for high  

 

Fig. 3. The internal structure of the MICCII-. 
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Table 1. Parameters of the CMOS transistors used in SPICE simulations.

0.35µm TSMC CMOS parameters 

.MODEL CMOSN NMOS ( LEVEL = 3 

+ TOX = 7.9E-9 NSUB = 1E17 GAMMA = 0.5827871 
+ PHI = 0.7 VTO = 0.5445549 DELTA = 0 
+ UO = 436.256147  ETA = 0 THETA = 0.1749684 
+ KN = 2.055786E-4 VMAX = 8.309444E4 KAPPA = 0.2574081 
+ RSH = 0.0559398  NFS = 1E12 TPG = 1 
+ XJ = 3E-7  LD = 3.162278E-11  WD = 7.046724E-8 
+ CGDO = 2.82E-10  CGSO = 2.82E-10  CGBO = 1E-10 
+ CJ = 1E-3  PB = 0.9758533  MJ = 0.3448504 
+ CJSW = 3.777852E-10  MJSW = 0.3508721 ) 

.MODEL CMOSP PMOS ( LEVEL = 3 

+ TOX = 7.9E-9 NSUB = 1E17 GAMMA = 0.4083894 
+ PHI = 0.7  VTO = –0.7140674 DELTA = 0 
+ UO = 212.2319801 ETA = 9.999762E-4  THETA = 0.2020774 
+ KP = 6.733755E-5 VMAX = 1.181551E5  KAPPA = 1.5 
+ RSH = 30.0712458 NFS = 1E12  TPG = –1 
+ XJ = 2E-7  LD = 5.000001E-13  WD = 1.249872E-7 
+ CGDO = 3.09E-10 CGSO = 3.09E-10 CGBO = 1E-10 
+ CJ = 1.419508E-3  PB = 0.8152753  MJ = 0.5 
+ CJSW = 4.813504E-10  MJSW = 0.5 ) 

 

frequency applications (frequencies of more than 77 MHz), a 
compensation is needed.  

The proposed circuit shown in Fig. 2 is simulated with the 
following passive element values: G = 1 mS (y1=G1=1 mS and  
y2=G2=2 mS) and C = 50 pF, which results in Leq= 50 µH. The 
power consumption of the designed grounded inductor is 
found to be 17.6 mW. 

To evaluate the performance of the proposed inductance 
simulator, we use it in the structure of a third-order Butterworth 
high-pass ladder filter shown in Fig. 5. The passive elements 
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Table 2. Dimensions of the CMOS transistors. 

PMOS transistors W(µm)/L(µm) 

M2 28/28 

M5 24.85/0.35 

M6 19.6/0.35 

M8 57.75/1.05 

NMOS transistors W(µm)/L(µm) 

M1 8.75/28 

M3 9.8/0.35 

M4 9.8/0.35 

M7 27.65/1.05 

 

 
 

Fig. 4. The simulated frequency responses of the Iz/Ix and Vx/Vy
for the MICCII-. 
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Fig. 5. Third-order high-pass ladder filter prototype. 
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are selected as C1=C2=0.1 nF, RL=Rs=1 kΩ, and synthetic 
inductor Leq = 50 µH, which results in a 3 dB frequency of 
1.59 MHz. Both ideal and simulated high-pass ladder filter 
responses are shown in Fig. 6.  

To exhibit the time domain performance of the proposed 
simulated inductor, a triangular input current with a 0.5 mA 
peak is applied to the proposed inductor (Leq=175 µH, obtained 
by G = 1 mS and C = 175 pF) to obtain a square wave output 
voltage, as shown in Fig. 7.  

Also, the proposed grounded inductance is used to construct 
a parallel resonant circuit as shown in Fig. 8. The element 
values are selected as Leq=LP=100 µH (G = 1 mS and 

 

Fig. 6. The ideal and simulated frequency responses of the third-
order Butterworth high-pass ladder filter. 
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Fig. 7. The ideal and simulated time domain responses of the 
proposed inductor. 
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Fig. 8. Parallel resonant circuit. 
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C = 100 pF), C1=0.1 nF, and R1=5 kΩ. Ideal and simulated 
high-pass (Ihp) and low-pass (Ilp) responses of the parallel 
resonant circuit are given in Fig. 9. Moreover, both ideal and 
simulated band-pass (Ibp) responses are depicted in Fig. 10. 
From Fig. 10, we can see that a gain error exists at the 
resonance frequency, which is due to the parallel resistance (Rp) 
of the simulated inductance. Considering α =1.02 and 
β =0.967 for the designed MICCII-, from (8) and (9), one can 
calculate the simulated inductance and its parallel resistance as 
Lp = 94.8 µH and Rp = 43.18 kΩ, respectively. Therefore, the 
quality factor of the simulated inductance at a frequency of 
1.59 MHz is found to be QL = 45.5. 
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Fig. 9. Ideal and simulated high-pass and low-pass responses of
the circuit in Fig. 8. 
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Fig. 10. Ideal and simulated band-pass responses of the circuit 
shown in Fig. 8. 
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From Figs. 6, 7, 9 and 10, we can see that the simulation 
results agree well with the theory. 

V. Conclusion 

In this paper, we presented a grounded inductor simulating 
topology. The proposed topology allows for a design with a 
minimum number of active and passive components, such as 
two resistors and one capacitor, and one MICCII-. We also 
investigated the non-ideality effects of the MICCII- on the 
proposed inductor. To demonstrate the frequency and time-
domain behavior of the proposed inductor, we performed 
simulations with SPICE using 0.35 µm TSMC CMOS 
technology. The simulation results verify the theoretical 
analysis.  
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