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A CHARACTERIZATION OF MANDELBROT SET OF
QUADRATIC RATIONAL MAPS

YouNG JOON AHN

Abstract. We present some properties characterizing the Mandel-
brot set of quadratic rational maps. Any quadratic rational map
is conjugate to either z° + ¢ or A(z + 1/2) +b. For [A| = 1, we
find the figure of the Mandelbrot set My, the set of parameters b
for which the Julia set of A(z + 1/z) + b is connected. It is seen to
be the whole complex plane if A # 1, but it is intricate fractal if
A = 1. This supplements the work already investigated for the case
|A] > 1.

1. Introduction

The study of the complex dynamics began by Julia and Fatou [4] in
the early of 20-th century. They made research on the Julia sets of ratio-
nal maps on the complex sphere and found most of the basic properties
on the complex dynamics. After Sullivan [11] solved the old problem on
the properties of components of Fatou set in 1982, the complex dynamics
has experienced a big progress. For example, Douady and Hubbard 3]
obtained essential results on the structure of the Mandelbrot set of 22 +c.
Another reason the complex dynamics attracted big popularity comes
from the intricate and beautiful computer images of the Mandelbrot set
and the Julia sets of 22 + ¢ [7].
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Any quadratic rational map can be seen to be conjugate to either
22+ cor Mz + %) +b. The dynamics of 22 + ¢ has been extensively
studied (see (3, 4]). For the map A(z 4+ 1/z) + b with |A| > 1, Goldberg
and Keen [5] obtained a criterion of its Julia set to be a Cantor set. He
proved that the Julia set is a Cantor set if two critical points +1 iterate
to infinity, and otherwise it is connected. Yin [12] also proved that if
a quadratic rational map has an invariant stable component containing
two critical points, then its Julia set is a Cantor set, and otherwise it is
connected.

In this paper, some properties of the dynamics of quadratic rational
maps for |A| = 1 are presented. Unfortunately, we knew that Proposition
3.6 is the same as in (6], later. But our method of proof of the proposition
is different from Milnor’s. Finally, we give a criterion of the parameter b
for which the Julia set of A(z +1/z) 4+ b with |A| = 1 is connected, using
iteration of critical points as in Theorem 3.10.

For clarity, in section 2 we first introduce some known results in the
dynamics of rational maps from the literature. Finally in section 3, we
present our analysis and results on some properties characterizing the

Mandelbrot set of the quadratic rational maps.

2. Preliminaries

In this section, we introduce some basic theorems and notations of
complex dynamics.

Let C be the extended complex plane, i.e., C = CU {oo0}. Let R :
C — C be a rational map with degree d greater than one. For n € N
the n-th iteration of R is written R™. The set

F(R) = {z: {R"} is a normal family in some neighborhood of z}

is called the Fatou set of R. The complementary set J(R) = C — F(R)
is called the Julia set.
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Definition. Let R : C — C be a rational map of degree d > 2, then z
is called a critical point of R if R'(z) = 0. The number (counting mul-
tiplicity) of critical points of a subset E of C is called a total deficiency
Sr(E) of R over E. We define the connectivity c(E) of a subset E as the

number of components of JF.

The following theorem gives the relationship between the total defi-
ciency and the connectivity of a component of F/(R), and it will be used

in the proof of Proposition 3.5.

Theorem 2.1. (Riemann-Hurwitz relation, Chap. 5 in [1] ) Let Fy
and Fy be the components of the Fatou set F of a rational map R and
suppose that R maps Fy into Fy. Then, for some integer m, R is an

m-fold map of Fy onto F and
2 — ¢(Fp) + dr(Fp) = m(2 — c(F1)).

A subset E of C is forward invariant under R if R(E) = E, backward
invariant under R if R™}(E) = E and completely invariant under R if E
is forward and backward invariant under R. The next theorem is useful

to find the Julia set of the rational map.

Theorem 2.2. (see Chap. 5 in [1]) If Fyy is a completely invariant
component of F(R), then 0Fy = J(R).

Let {¢1, - ,¢q} be a cycle of a rational map R. Then the derivative

of R? at each point (; is as follows.
q q
(RY'(¢) = [[R R @) = ][ R (&)
j=1 j=1
The number is called the multiplier of the cycle.

Definition. Let {¢1, -+ ,{;} be a cycle of a rational map R. Then for
any i € {1,2,---,q} this cycle is called by
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(1) attracting if |(R?)'(¢;)| < 1;

(2) rationally indifferent if (R%)'(({;) is a root of unity ;

(3) drrationally indifferent if |(R?)'((;)| = 1, but (R?)’({;) is not a root
of unity ;

(4) repelling if |(R?)'(¢;)| > 1.

A rationally indifferent cycle is also called a parabolic cycle. The cycle
with |(R?)'(¢;)] < 1 is called by nonrepelling. Shishikura [10] proved
the following theorem on the number of nonrepelling cycles by using

quasiconformal maps.

Theorem 2.3. A rational map R of degree d has at most 2d — 2

nonrepelling cycles.

Therefore any quadratic rational map has at most two nonrepelling
cycles. The following theorems explain the relations between the multi-

plier of a cycle and the dynamics of the map near the cycle.

Theorem 2.4. (see Chap. 6 in [1]). Let {(1,---,(q} be a cycle of
R. If the cycle is attracting, then each (; lies in a component, say F}, of
the Fatou set F'(R), and R™ — (; locally uniformly on Fj asn — co. If
the cycle is rationally indifferent or repelling, then the cycle lies in the
Julia set J(R).

For the irrationally indifferent cycle in Fatou set, the following theo-

rem is known.

Theorem 2.5. (see Chap. 6in[1]) Let {(1,--- ,{q} be an irrationally
indifferent cycle which lies in F\(R) and let (; lies in a component F; of
F(R). Then F; is simply connected, and R?: F; — Fj is conjugate to a

rotation of infinite order of the unit disc D

Any component of the Fatou set of this type is called a Siegel disc after
C.L. Siegel established its existence in 1941 (see [8, 9]). For example, if
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R(z) = Az+7%, A = exp(in(v/5—1)), then 0 is the irrationally indifferent
fixed point of R and the component containing 0 is a Siegel disc (see [7]).
Any analytic map containing a rationally indifferent fixed point at ¢

can be seen to be conjugate to
(2.1) F(z) = z — 2271+ O(2PT?)

for some integer p, in some neighborhood of the origin. For the dynamics
of an analytic map near a rationally indifferent fixed point, we have the

following well-known theorems.

Theorem 2.6. (see Chap. 6 in [1]) Suppose that f is an analytic
map satisfying (2.1) and let wy,- -+ ,wp be the p-th roots of unity and
M, ,np be the p-th roots of —1. Then for sufficiently small positive

numbers ry and 6y, we find that | f(z)] < |z| on each sector
S; = {2|0 < |z/wi| < 1o, |arg(z/ws)] < o}
and |f(z)| > |z| on each sector

i = {2[0 < |z/m| < ro, |arg(z/m:)| < o}

For each positive number ¢, each positive integer p, and each k =
0,1,---,p— 1 in we define the sets IIi(t) as

I, (t) = {re’ : rP < (1 + cos(pd)) and [2kw/p — 6| < 7/p}

These sets are called petals (at the origin). Note that the petals are
pairwise disjoint, and that each petal subtends an angle 2n/p at the
origin, so that the total angle subtended at the origin by all the petals
is 2. We call the line of symmetry of IIt(t) (the ray 6 = 27/p) by
the azis of petal II;(t). The local dynamics at the parabolic fixed point
is described in the following important theorem, which will be used to

prove Proposition 3.4.
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Theorem 2.7. (The Petal Theorem, see Chap. 6 in [1] ) Suppose

that an analytic map f has a Taylor expansion
f(z) =2z—- 2P 4 (’)(zp+2)

at the origin. Then for all sufficiently small t and fork=1,--- ,p :

(1) f maps each petal II;(t) into itself ;

(2) f™ — 0 uniformly on each petal as n — oo;

(3) arg f*(2) — 2km/p locally uniformly on TI;(t) as n — oo;
(4) |f(2)] < |2| on a neighborhood of the axis of each petal.

In particular, if f is a rational map, then the Fatou set has components

F}; each of which contains Il respectively, such that

(6) f™ — 0 uniformly on each component F}, as n — co;

(6) arg f™(z) — 2kn/p locally uniformly on Fy, as n — oo.

D. Sullivan (see [7, 11] ) solved the old problem of complex dynamics
since Fatou and Julia. He showed that every component of the Fatou
set F'(R) is eventually periodic. It plays an important role in the theory

of complex dynamics with the following classification theorem.

Theorem 2.8. ( Sullivan’s Classification Theorem [11]) Let R be a
rational map and Fy be a periodic component of the Fatou set of R with
period n and let S = R™. Then Fy must be one of the following four
types :

(1) Fp is an attracting component if it contains a periodic point p such
that 0 < |S'(p)| < 1.

(2) Fy is a parabolic component if there exists a periodic point p on
OFy whose period divides n and §%(z) — p as k — oo for all
z € F.

(3) Fy is a Siegel disc if Fyy is simply connected and S| F, 1S conjugate

to a rotation.
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(4) Fy is a Herman ring if Fy is conformally equivalent to an annulus
A={ze€C:r <|z| <ro} (wherery, 2 € R, 71 >0, r2 > 0) and

the map S‘Fo is conjugate to a rigid rotation of the annulus.

The union of those components of F(R) whose closure contains an
attracting or a parabolic cycle (1, - ,(q is called the immediate basin
of the cycle. Especially, we denote the immediate basin of an attracting
fixed point ¢ by A(¢) which consists of only one attracting component of
the Fatou set. For example, if R(z) = 2%+c, then oo is an attracting fixed
point of R and A(00) is the component containing oo and is completely
invariant. By Theorem 2.2, 0A(o0) is the Julia set of R. The following

three theorems will be used to prove Proposition 3.7.

Theorem 2.9. (see Chap. 9 in [1] ) The immediate basin of an

attracting cycle or a parabolic cycle of R contains a critical point of R.

We denote the set of critical points of R by C(R), and we use C*(R)

to denote the union of forward of C(R), i.e.,

CH(R) = U R (O).

Theorem 2.10. (see Theorem 9.3.3in [1] ) Let Qy,--- , €, be a cycle
of Siegel discs or Herman rings of rational map R. Then the closure of
C™*(R) contains UOSY;.

Theorem 2.11. (see Theorem 9.3.4 in (1] ) Every irrationally indif-
ferent cycle of R in J lies in the derived set of C*(R).

Yin(see [12]) proved the following significant theorem:.

Theorem 2.12. If a quadratic rational map R(z) has a forward

invariant component of F(R) containing two critical points, then the
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Julia set J(R) is a Cantor set and R restricted to J(R) is conjugate to
the one-sided shift on 2-symbols.

For the other cases, J(R) is connected.

3. Mandelbot set of quadratic rational map

In this section we present some properties of the Mandelbot Set of
quadratic rational map. Especially, Theorem 3.10 characterizes the
Mandelbrot set of the map A(z + 1/z) + b with |A| = 1, i.e., the set

of parameter b for which the Julia set is connected.

Lemma 3.1. Any quadratic rational map is conjugate to one of two

forms by a Mébius transformation :
224c or Mz+1/z)+b.

Proof. A quadratic rational map R is at least one of the following

three types :
(a) zero is a fixed point of R, that is R(0) =0,

(b) non-zero fixed point of R exists in C;

(c) R has the fixed points only at co.

In the case (c), using the Mébius transformation h(z) = 1/z, we can
easily obtain the fact that ho Ro h~! has three fixed points in C. Thus
the quadratic rational map of the type (c) is conjugate to a quadratic
rational map which is one of the type (b). In the case (b), (ho Ro
h1)(z) = R(z + a) — a has a fixed point at zero, where h(z) = z — «
with « a nonzero fixed point if R. Hence the quadratic rational map of
the type (b) is conjugate to a quadratic rational map which is one of the
type (a). Therefore, we may assume that R(0) = 0 and R is expressed

as
a222 + a1z
bpz2 + bz + by
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R is then conjugate to
by + b1z + b022
as+az .
by the Mébius transformation h(z) = 1/z. If a1 = 0, then R is conjugate
to a quadratic polynomial. Any quadratic polynomial is conjgate to
22 + ¢. If a1 # 0, then there exist complex numbers \; (i = 1,2, 3) such

that )
bo + b1z + byz A3
= M(a1z+a Ay + ——,
as +arz 1( 12 2)+ 2 a1z + az

Now we take h(z) = a1z +az and let Ry =hoRo h~!. Then

Zz—Q
Ri(z) = ay R(Z—2

A
)+ a2 =a1Az+ar1hy + a + as.
al z

Finally, we take h(z) = z/r where 2 = A3/)\; and let Ry = ho Rjoh™,
b= (a1M + a2)/r and A = a1 M. Then
al)\l + al)\g

= a1\
RQ(Z) ajiiz + . -3,

A

+ 2 o azab+l,

T z
O

We present some properties of Fatou set and Julia set of quadratic

rational maps in the following propositions.

Proposition 3.2. If a component Fy of F(R) is an attracting or a

parabolic forward invariant component, then Iy is completely invariant.

Proof. By the conjugation, we may assume that R is either 22+ cor
Az+1/2)+b. First, we let R = A(z+1/z)+b. Then since R(z) = R(1/z),

ze J(R) iff 1/z¢€ J(R).

Let Fy = {1/z: z € Fy}. Then F is also a component of F(R). Since
the forward invariant component Fp contains a critical point 1 or -1,
the component Fj also contains the same critical point whatever Fp
has. Therefore, Fy and F; must be the same component of F(R), and
furthermore, if 2z € Fy then 1/2 € Fy = Fy. To see that Fp is completely
invariant, let ¢ € Fy. If zg € R™}({), then 1/29 € R™!((). Since Fy is



414 Young Joon Ahn

forward invariant, one of zy and 1/zp must be in Fy and hence both zg
and 1/zg belong to Fy. Therefore, Fy is completely invariant.
Now, we let R(z) = 22 + ¢. Then since R(z) = R(—2z),

ze J(R) if —zeJ(R).

Let Fi = {—z: z € Fy}. Then F; is also a component of F'(R). Since
the forward invariant component Fy contains a critical point 0 or oo,
the component F) also contains the same critical point whatever Fy
has. Therefore, Fy and F; must be the same component of F'(R), and
furthermore, if z € Fy then —z € I} = Fy. To see that Fp is completely
invariant, we let ¢ € Fy. If zg € R71((), then —2z5 € R™1(¢). Since Fy is
forward invariant, one of zg and —zy must be in Fy and hence both zg

and —zgp belong to Fy. Therefore, Fy is completely invariant.
|

Proposition 3.3. There exists an attracting forward invariant com-
ponent containing two critical points if and only if both critical points

iterate to an attracting fixed point.

Proof. If a component is attracting forward invariant, by the Sulli-
van’s Classification Theorem, all points in the component iterate to an
attracting fixed point.

Conversely, if both critical points iterate to an attracting fixed point
¢, then an attracting forward invariant component containing ¢ is com-
pletely invariant by Proposition 3.2. Therefore, it contains two critical

points. O

Proposition 3.4. There exists a parabolic forward invariant com-
ponent of R containing two critical points if and only if both critical
points in F(R) iterate to a parabolic fixed point ¢ with R'(¢) = 1 and

R'(C) #0.

Proof. If a parabolic forward invariant component exists, then by Sul-

livan’s Classification Theorem there exists a parabolic fixed point ¢ such
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that all points in the component iterate to ¢ and R'({) = 1. Suppose
R"(¢) = 0. Then R has at least two petals near by the Petal Theo-
rem. Each petal is contained in a distinct forward invariant component
and each component contains at least one critical point. Since one of
the components contains two critical points, the union of all compo-
nents contains at least three critical points, which is impossible for the
quadratic rational map.

Conversely, let both critical points in F(R) iterate to a parabolic
fixed point ¢ with R'(¢) = 1 and R"(¢) # 0. Since R is analytic near ¢
and R'(¢) =1, we have

R(z) = C+RI(Q(z-—()+£2(C—)-(z—O2+...
= Z+§—,2(ﬁ(z—C)2+...

Since R"(¢) # 0, R has only one petal by the Petal Theorem and a com-
ponent containing the petal is forward invariant. From Theorem 2.6 , we
know that both critical points iterating to ¢ eventually lie in the para-
bolic component. It follows from Proposition 3.2 that the component is

completely invariant and both critical points lie in the component. [

Proposition 3.5. Ifa forward invariant component of F'(R) contains
two critical points then it is an attracting component or a parabolic

component.

Proof. Let Fy be a forward invariant component of F'(R) which con-

tains two critical points. By the Riemann-Hurwitz relation, we have
2 — C(Fo) + 5R(F0) = m(2 - C(FO)).

Since dp(Fy) =2and m = 1lor 2, ¢(Fp) = coor 0. If ¢(Fp) = 0 then Fo
equals to the complex sphere, which contradicts to the fact that J(R)
is non-empty. Hence c(Fp) must be co. Therefore, Fp is neither a Siegel
disc nor a Herman ring. By the Sullivan’s Classification Theorem, Fj is

an attracting or a parabolic component. O
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Proposition 3.6. The Julia set of a quadratic map R is a Cantor

set if and only if both critical points iterate to

(1) an attracting fixed point, or
(2) a parabolic fixed point ¢ with R'(¢) =1 and R"(¢) # 0 in F(R).

Proof. By Theorem 2.12, J(R) is a Cantor set if and only if there
exists a forward invariant component containing both critical points.
By Proposition 3.4, this is equivalent to the existence of an attracting or
a parabolic forward invariant component containing both critical points.

Hence the assertion is obtained by Propositions 3.3 - 3.4. O

Proposition 3.7. If there exist two non-repelling cycles of R, then
J{R) is connected.

Proof. Suppose that J(R) is a Cantor set. By Theorem 3.5, one of
the two cycles is an attracting or a parabolic fixed point, say (, to which
both critical points in F(R) iterate. Let {£1,---,&;} be the other cycle

of R for some integer g. Then it is one of the four types :

(1) attracting cycle ;

(2) parabolic cycle ;

(3) irrationally indifferent cycle in J(R);

(4) irrationally indifferent cycle in F(R).
In the case (1) or (2), by Theorem 2.9, there exists a critical point and
the derived set of its orbit is U{&;}. This contradicts to the fact that
both critical points iterate to {. In the case (3), & lie in the derived set
of C*(R) by Theorem 2.11, which is a contradiction since the derived
set of C*(R) is {¢}. In the case (4), & are the center of Siegel discs,
which is impossible since J(R) is totally disconnected. O

Proposition 3.8. If there exists an indifferent cycle w1, -+ ,wq of
R such that w; is not a parabolic fixed point with R'(w1) = 1 and
R"(w1) # 0, then J(R) is connected.
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Proof. Suppose that J(R) is a Cantor set. By Theorem 3.1, there
exists an attracting or a parabolic fixed point ¢, which cannot be w;. It

follows from Proposition 3.7 that J(R) is connected. O

Corollary 3.9. If an attracting cycle of R with period exists or if

non-repelling cycle of R does not exist, then J(R) is connected.

Let Ry 4(z) be a quadratic rational map A(z + 1/2) + b with A € R,
b € C. We define the Mandelbrot set My, for each A, of the quadratic
rational maps R) p as a set of parameter b for which the Julia set J (Rxp)
is connected. By Propositions 3.6 and 3.8, one can easily characterize
the Mandelbrot set M), for |[A\] = 1, as in the following theorem.

Theorem 3.10. If|\| = 1 and X # 1, then M), is the whole complex
plane. If A =1, then

My =C—{b#0: lim R},(£1) = oo and RY,(£1) # 0 for any n}.

Proof. Let Ry (2) be conjugate to a map f(z) by a Moebius trans-
formation h(z) = 1/z. Then we have f(2) = z/(A(2? + 1) + bz) and it is
clear (see P. 261, [2]) that

\o(00) = (- R-h71(0) = f'(0) = .

When |A| = 1 and X # 1, oo is an indifferent fixed point of Ry, with
R}, ,(00) # 1. By Proposition 3.8, J(Rap) is connected for any b. Hence

we get

M, =C for|\|=1 and A # 1.

When X = 1, oo is a parabolic fixed point of Ry ; with Ra,b(oo) =1.1If
b= 0, then R} ,(c0) = f"(0) = 0 and the Julia set J(R1p) is connected
by Proposition 3.8. Hence b =0 € My, If b # 0, then R] ,(c0) = f"(0) =
—2b # 0. By Theorem 3.6, b ¢ M; if and only if both critical points +1

in F(R; ) iterate to co. Note that if one of the critical orbits lands on 0,
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then the critical point belongs to the Julia set and J(R; ) is connected.
Therefore, 0 € My, and if b # 0 then b ¢ M if and only if

lim RY,(£1) = 0o as n — oo and RY,(£1) # 0 for any n.

n—oo
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