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ABSTRACT. In this paper, we define a multifunction F' : X ~ Y to be upper (lower)
Z—supercontinuous if £+ (V) (F~(V)) is z-open in X for every open set V of Y. We obtain
some characterizations and several properties concerning upper (lower) Z-supercontinuous
multifunctions.

1. Introduction

Several weak and strong variants of continuity of multifunctions occur in the
literature. The strong varients of continuity of multifunctions with we shall be deal-
ing in this paper include [1], [2], [3]. Certain of these strong forms of continuity
of multifunctions coincide with continuity of multifunctions if the domain / range
space is suitably augmented. M. K. Singal and S. B. Niemse [4] defined z-continuous
functions and investigated some properties. In 2003, J. K. Kohli [5] introduced the
concept of Z-supercontinuous functions and some properties of Z-supercontinuous
functions are given by him. In this paper we introduce anew strong form of con-
tinuity of multifunctions called “upper (lower) Z-supercontinuity”, which coincides
with upper (lower) continuity if domain or range is a completely regular space, or if
range is a perfectly normal space. Characterizations and basic properties of upper
(lower) Z-supercontinuous multifunctions are alaboreted in section 3. In section 4,
we show that if the domain of a upper (lower) Z-supercontinuous multifunction F
is retopologized in an approriate way, then F' is simply a continuous multifunction.

A multifunction F' : X ~ Y. is a correspondence from X to Y with F(z) a
nonempty subset of Y, for each x € X. Let A be a subset of a topological space

(X, 7). A and 4 denote the interior and closure of A respectively. A multifunction
F of a set X into Y is a correspondence such that F(z) is a nonempty subset of
Y for each z € X. We will denote such a multifuntion by F' : X ~ Y. For a
multifunction F', the upper and lower inverse set of a set B of Y will be denoted
by FT(B) and F~(B) respectively that is F*(B) = {z € X : F(z) C B} and
F~(B)={z € X : F(z)NB # 0}. The graph G(F') of the multifunction F' : X ~» Y
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is strongly closed [3] if for each (z,y) ¢ G(F'), there exist open sets U and V
containing = and containing y respectively such that (U x V)N G(F) = 0. [6] A
multifunction F' : X ~ Y is said to be upper semi continuous (briefly u.s.c.) at a
point « € X if for each open set V in Y with F'(z) C V, there exists an open set U
containing x such that F(U) C V; lower semi continuous (briefly l.s.c.) at a point
x € X if for each open set V in Y with F(z) NV # (), there exists an open set U
containing z such that F(2) NV # @ for every z € U. A set G in a topological
space X is said to be z-open if for each = € G there exists a cozero set H such that
x € H C G, or equivalently, if G is expressible as the union of cozero sets. The
complement of a z-open set will be referred to as a z-closed set [5].

Throughout this paper, the spaces (X, 7) and (Y, o) (or simply X and Y') always
mean topological spaces and F': X ~ Y (resp. f: X — Y) presents a multivalued
(resp. single valued) function.

2. Preliminaries and basic properties
Definition 1. A multifunction F' : X ~» Y is said to be

(a) upper Z-supercontinuous (Briefly, u. Z-super c.) at a point z € X if for
every open set V with F(xz) C V, there exists a cozero set U containing x
such that F(U) = U{F(u) :u e U} C V;

(b) lower Z-supercontinuous (1. Z-super c.) at a point z € X if for every open
set V with F(z) NV # (), there exists a cozero set U containing z such that
F(u)NV # 0 for every u € U;

(¢) upper Z-supercontinuous (resp. lower Z-supercontinuous) if it has this prop-
erty at each point z € X.

Definition 2([3]).

(a) A multifunction F : X ~ Y is called strongly 6- upper semi continuous (s.
f-u.s.c.) at a point € X if for any open set V C Y such that F(x) C V

there exists an open set U C X containing x such that F(U) C V.

(b) A multifunction F': X ~ Y is called strongly #-lower semi continuous (s. 6-
ls.c.) at a point z € X if for any open set V C Y such that F(x) NV # ()
there exists an open set U C X containing z such that F'(u) NV # @ for every
reU.

Definition 3([1]).

(a) A multifunction F': X ~ Y is called upper supercontinuous (u. super c.) at
a point x € X if for any open set V' C Y such that F(x) C V there exists an
o

open set U C X containing = such that F(U) C V.
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(b) A multifunction F' : X ~ Y is called lower supercontinuous (1. super c.) at
a point x € X if for any open set V' C Y such that F(z) NV # () there exists

an open set U C X containing = such that F(u) NV # () for every x €U .

Definition 4([2]).

(a) A multifunction F': X ~ Y is called upper D-supercontinuous (u. D-super
c.) at a point € X if for any open set V C Y such that F(z) C V there
exists an open Fy,- set U C X containing x such that F(U) C V.

(b) A multifunction F': X ~ Y is called lower D-supercontinuous (1. D-super
c.) at a point z € X if for any open set V C Y such that F(x) NV # () there
exists an open F,-set U C X containing x such that F(u) NV # 0 for every

zeU.
u. Z-super c.(l. Z-super c.) = u. D-super c. (1. D-super c.)
I
u. Strongly 6-c.(l. Strongly 6-c.)
4
¢
u. Super c. (1. super c.) = u. semi c. (1. semi c.)

The diagram well illustrates the relationships that exist among u. Z-
supercontinuous (1. Z-supercontinuous) and various variants of continuity of mul-
tifunctions defined above. However, none of the above implications in general is
reversible as will be exhibited in the sequel.

We gave examplesl and 2 to show that a u.Strongly 6-c. (1. Strongly 6-c.)
multifunction need not be u. Z-super c. (1. Z-super c.) and that u. D-super c. (L
D-super c.) multifunction need not be u. Z-super c. (1. Z-super c.).

Example 1([5]). Let X =Y be the Mountain chain space due to Helderman [7]
which is a regular space but not a Ds-completely regular space [10]. Then the mul-
tifunction F : X ~ X | F(z) = {x} for each z € X.is a u. Strongly #-continuous
(1. Strongly 6-continuous) but not u. Z-supercontinuous (1. Z-supercontinuous).

Example 2. Let X denote the set of positive integers endowed with cofinite topol-
ogy. Then the multifunction F : X ~ X, F(z) = {z} for each z € X.s u.
D-supercontinuous (1. D-supercontinuous) but neither u. supercontinuous (1. su-
percontinuous) nor u. Strongly #-continuous (1. Strongly #-continuous) and hence
not u Z-supercontinuous (1. Z-supercontinuous).

3. Characterizations
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Definition 5. A set G in a topological space X is said to be z-open if for each
x € G there exists a cozero set H such that x € H C G, or equivalently, if G is
expressible as the union of cozero sets. The complement of a z-open set will be
referred to as a z-closed set [5].

Theorem 1. The following statements are equivalent for a multifunction F : X ~»
Y:

(a) F is u. Z-super c. (I. Z-super c.)
(

(c
(d

)

b) For each open set VCY, FY (V) (F~(V)) is a z-open set in X.
) For each closed set K CY, F~(K) (FT(K)) is a z-closed set in X.
)

For each x of X and for each open set V with F(z) C V(F(x)NV # 0), there
is a z-open set U containing x such that the implication y e U = F(y) C V
is holds (F(y) NV #0).

Proof. (a) = (b) : Let V be an open set of Y and « € F*(V). Then there exist
a cozero set U containing = such that F(U) C V. Then U C F*(V). Since U is
cozero, we have x € U C FT (V).

(b) = (c¢) : Let K be a closed set of Y. Then Y — K is an open set and
FY(Y - K)=X - F(K) is z-open. Thus F~(K) is z-closed in X.

(¢) = (b) : Obvious

(b)) = (a) : Let V be an open set of Y containing F(z). Then F* (V) is z-open
and x € F(V). Since F* (V) is a z-open set there exists a cozero set U containing
x such that U ¢ F*(V). Thus F(U) C F(FT(V)) C V.

(a) <= (d) : Clear.

The proof for the case where F' is 1. Z-super c. is similarly proved. O

Definition 6. Let X be a topological space and let A C X. A point x € X is said
to be a z-adherent point of A if every cozero set containing x intersects A. Let A,
denote the set of all z-adherent points of A. Clearly the set A is z-closed if and
only if A, = A. [Kohli, Z-supercontinuous Functions|

Theorem 2. A multifunction F: X ~ Y is l. Z-super c. if and only if F(A,) C
F(A) for every AC X.

Proof. Suppose F is 1. Z-super c. Since F(A) is closed in Y, by Theorem (1)

FT(F(A)) is z-closed in X. Also since A C F"(F(A)), A, C [Ft(F(A))]. =

FtF(A,) Thus F(A,) C F(FT(F(A))) C F(A).
Conversely, suppose F(A,) C F(A) for every A C X. Let K be any closed set in
Y. Then F([F*(K)],) C F(F+(K)) and F(F*(K)) C K = K.Hence [F*(K)], C

F*(K) which shows that F is 1. Z-super c. O

Theorem 3. A multifunction F from a space X into a space Y is l. Z-super c. if

and only if [FT(B)], C F™(B) for every BCY.
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Proof. Suppose F is 1. Z-super c. Then F*(B) is 2-closed in X for every B C Y

and F™(B) = [F*(B)],. Hence [F*(B)], C F*(B).

Conversely, let K be any closed set in Y. Then [FT(K)], C FT(K) = FT(K) C
[FT(K)],. Thus F*(K) = [FT(K)], which in turn implies that F is 1. Z-super c.
U

Definition 7. A filter base F is said to z-converge to a point 2 (written as F = z) if
for every cozero set containing x contains a member of F [Kohli, Z-supercontinuous
Functions].

Theorem 4. A multifunction F : X ~ Y is . Z-super c. if and only if for each
x € X and each filter base F that z-converges to x, y is an accumulation point of
F(F) for every y € F(x).

Proof. Assume that F is 1. Z-super c¢. and let F = z Let W be an open set
containing y, with y € F(z). Then F(x)NW # 0, x € F~ (W) and F~(W) is
z-open. Let H be an open cozero set in X such that z € H ¢ F~(W). Since F
2 2 there exists U € F such that U € H. Let F(A) € F(F Then for A, U € F
there is a set Uy of F such that Uy ¢ ANU. If x € Uy, then since U; C U C H,
F(z)NW # 0. On the other hand if € A, then since F(z) C F(A),F(U;) C F(4)
and since F(U1)NW # 0, F(A)NW # ). Thus y is an accumulation point of F(F).

Conversely, Let W be an open subset of Y containing F'(z). Now, the filter F
generated by the filterbase W, consisting cozero sets containing x, z-converges to
x. If F'is not 1. Z-super c. at z, then there is a point z €U for every U € F
such that F(z')NW = 0. If we define U = 2/ € U | F(z/)NW =0,U € F then
F=U:UE€ Fis a filter such that z-converges to x. Since UcC U, by hypothesis
for each y € F(z), y is an accumulation point of F(F. But for every U € F,
F((NI) NW = (. This is a contradiction to hypothesis. Hence F' is 1. Z-super c. at
x. g

Theorem 5. If F: X ~ Y s u. Z-super c. (I. Z-super c.) and F(X) is endowed
with subspace topology, then F : X ~» F(X) is u. Z-super c. (I. Z-super c.)

Proof. Since F : X ~ Y is u. Z-super c. (1. Z-super c.), for every open subset V
of Y, FF(VNF(X))=Ft(V)NFH(F(X))=Ft(V)(F- (VNFX))=F (V)N
F(F(X)) = F~(V)) is z-open. Hence F.X ~ F(X) is u. Z-super c. (1. Z-super
c.) O
Theorem 6. If F: X ~ Y is u. Z-super c. (I. Z-super c¢.) and G:Y ~ Z u. s.
c. (I. s. ¢.), then GoF is u. Z-super ¢ (I. Z-super c.).

Proof. Let V be an open subset of Z. Then since G is u. s. c¢. (. s. «¢)
GH(V)(G~(V)) is open subset of Y and since F' is u. Z-super c. (l. Z-super c.)
FHGT(V))(F~(G(V))) is z-open in X. Thus G o F is u. Z-super c. (l. Z-super
c.). O

Theorem 7. Let {F, : X ~ X,,a € A} be a family of multifunctions and let
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F:X~ HXO‘ be defined by F(x) = (Fa(x)). Then F is u. Z-super c. if and
a€EA
only if each Fp, : X ~ X, is u. Z-super c.

Proof. Let G, be an open set of X,,. Then

(Pay 0 F)*(Gap) = FJF(PJO(Gao)) = F*(Gay % H Xa).

aFag

Since F is u. Z-super c. FT(Gq, % H X4). is z-open in X. Thus P,, o F = F,

aFag
is u. Z-super c. Here P, denotes the projection of X onto a- coordinate space X,.

Conversely, suppose that each F,, : X ~ X, is u. Z-super c. To show that
multifunction F' is u. Z-super c., in view of Theorem(1) it is sufficient to show

that FT(V) is z-open for each open set V in the product space H X, Since the

aEA
finite intersections and arbitary unions of z-open sets are z-open, it suffices to prove

that F*(S) is z-open for every subbasic open set S in the product space H Xo.

aEA
Let Ug x H X, be a subbasic open set in HXO" Then F*(Ug x H Xa) =
a#B aEA a#B
F*(Pg'(Ug)) = Fg(Ug) is z-open. Hence F is u. Z-super c. O

Theorem 8. Let F : X ~ Y be a multifuntion and G : X ~ X XY defined by
G(z) = (z, F(x)) for each x € X be the graph function. Then G is u. Z-super c. if
and only if F is u. Z-super c. and X is completely reqular.

Proof. To prove necessity, suppose that G is Z-super ¢. By Theorem (7) F' = Py oG
is Z-super c. where Py is the projection from X xYonto Y. Let U be any open set in
X and let U XY be an open set containing G(z). Since G is Z-super c., there exists
a cozero set W containing x such that the implication 2’ € W = G(2') C U x Y
holds. Thus z € W C U, which shows that U is z-open and so X is completely
regular.

To prove sufficiency, let z € X and let W be an open set containing G(z).
There exists open sets U C X and V C Y such that (z, F(z)) C U xV C W. Since
X is completely regular, there exists a cozero set GG1in X containing x such that
x € Gy C V. Since F is Z-super c., there exists a cozero set G in X containing
x such that the implication 2’ € Gy = F(2') C V. Let Gy NGy = H. Then H
is an cozero set containing x and G(H) C U x V' C W which implies that G is u.
Z-super c. (I

Definition 8. Let ' : X ~ Y be a multifuntion.

(a) F is said to be upper Z-continuous (briefly u. Z-c.) at = € X, if for each
cozero set V with F(x) C V, there exists an open U set containing x such
that the implication ' € U = F(z') C V is hold.
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(b) F is said to be lower Z-continuous (briefly 1. Z-c.) at x € X, if for each
cozero set V with F(z) NV # (0, there exists an open set U containing x such
that the implication 2’ € U = F(2') NV # 0 is hold.

(c) F is said to be Z-continuous (briefly Z-c.) at « € X, if it is both u. Z-c. and
l. Z-c. at z € X.

(d) F is said to be u. Z-c. (1. Z-c., Z-c.) on X, if it has this property at each
point z € X.

Theorem 9. For a multifunction F' : X ~ Y, the following statements are equiva-
lent:

(a) FisuZ-c (I. Z-c.)
(b) For every z-open set V.CY,F+(V) (F~(V)) is an open set in X.
(c) For every z-closed set K CY, F~(K) (FT(K)) is a closed set in X.

Lemma 1. For a multifunction F : X ~Y | the following statements are equiva-
lent:

(a
(b

)
)
c)
)
)

Fisu. Z-c
F(A) C [F(A)], forall AC X
FT(B) C F*(|B).) forall BC X

(
(d) For every z-closed set K CY, FT(K) is closed
(e) For every z-open set G CY, FT(G) is open
Proof. (a)=>(b): Let y € F(A). Choose x € A such that y € F(z). Let V be
a cozero set containing F(z) so y. Since F is u. Z-c., F*(V) is an open set
containing 2. This gives F*(V) N A # () which in turn implies that V N F(A) # 0
and consequently y € [F(A)],. Hence F(A) C [F(A)]..

(b)=-(c): Let B be any subset of Y. Then F(F*(B)) C [F(FT(B))]. C [B].
and consequently F'+(B) C F*([B].).

(¢)=>(d): Since a set K is z-closed if and only if K = [K],, therefore the
implication (c)=-(d) is obvious.

(d)=(e): Obvious.

(e)=(a): Since every cozero set is z-open and since a multifunction is u. Z-c.
if and only if the inverse image of every cozero set is open. Hence (e)=-(a). O

Theorem 10. Let X, Y and Z be topological spaces and let the function F' : X ~ Y
be u. Z-c. and G:Y ~> Z be u. Z-super c. Then Go F : X ~ Z is u.s.c.

Proof. Since (Go F)*(V) = FH(GT(V)), it is immediate in view of Lemma (1) and
Theorem (1). O

Theorem 11. Let F: X ~ Y be a u. s. c¢. (I. s. ¢.) multifunction defined on a
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completely reqular space. Then F is u. Z-super c. (I. Z-super c.).

Proof. In a completely regular space, every open set is z-open. O

Theorem 12. Let F: X ~ Y be a u. s. c. (I. s c) multifunction. IfY is
perfectly normal space, then F is u. Z-super c. (I. Z-super c.).

Proof. In a perfectly normal space, every open set is a cozero set and a u. s. ¢. (L
s. ¢.) multifunction lifts cozero sets to cozero set. ]

Theorem 13. Let F: X ~ Y be a u. s. c¢. (I. s. c.) multifunction defined on a
completely regqular space. Then F is u. Z-super c. (I. Z-super c.).

Proof. In a completely regular space every open set is z-open and it is easily verified
that a u. s. ¢. (1. s. ¢.) multifunction lifts z-open sets to z-open sets. O

Definition 9 ([8]). We may recall that a space X is quasi compact if every cover
of X by cozero sets admits a finite subcover.

Theorem 14. Let F: X ~ Y be u. Z-super c. (I. Z-super c.) multifunction from
a quast compact space onto Y. ThenY is compact.

Proof. Let p = {v, : @ € A} be an open cover of Y. Then each F* (V) is a z-open
set in X and so it is a union of cozero sets. This in turn yields a cover i of X
consisting of cozero sets. Since X is quasi compact there is a finite subcollection
{C1, Cs, C5,---,Cy} of hwhich covers X. Suppose C; C F*(V,,) for some a; € A
(i=1,2,---,n). then {Vay, Vag, - ,Va,} is a finite subcover of p. Thus X is
compact. U

Definition 10 ([9]). A space X is said to be almost compact if every open covering
of X has a finite subcollection the closures of whose members covers X.

Definition 11 ([10]). Let X be a topological space and let A C X. A point z € X
is called a 6-limit point of A if every closed neighborhood of x intersects A. Let clg A
denote the set of all #-limit points of A. The set A is called -closed if A = clyA.
The complement of a #-closed set is called a 6-open set.

Definition 12 ([10]). A space X called §-compact if every f-open cover of X has
a finite subcover.

It is observed in [11] that every almost §-compact space is #-compact and every
f-compact space is quasi compact. However, none of the reverse implications hold.
The following corollaries are immediate from Theorem (14).

Corollary 1. If F: X ~ Y is a u. Z-super c. (I. Z-super c.) multifunction from
a B-compact space X onto Y. ThenY is compact.

Corollary 2. If F: X ~ Y is a u. Z-super c. (I. Z-super c.) multifunction from
an almost compact space X onto Y. Then'Y is compact.

Theorem 15. Let F : X ~ Y be a u. Z-c. (I. Z-c.) multifunction from a quasi
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compact space X onto a space Y. Then Y is quasi compact.

We omit simple proof of Theorem (15).

Definition 13 ([5]). Let f : X — Y be a surjection from a topological space X
onto a setY. The topology on Y for which a subset A C Y is open if and only if
f71(A) is z-open in X is called the z-quotient topology and the map f is called the
z-quotient map.

Theorem 16. Let F' be a multifunction from a topological space (X, T1) onto a
topological the space (Y, T2), where 1o is z-quotient topology on Y. Then F is L
Z-super c¢. Moreover 1o is the finite topology on Y which makes F : X ~ Y I
Z -super c.

Proof. The 1. Z-super continuity of F' follows from the definition of z-quotient
topology. O

Theorem 17. Let f: X — Y be a z-quotient map. Then a multifunction F :Y ~»
Z isl. s. c. if and only if F o f is . Z-super c.

Proof. 1f U is an open set in Z and F o f is I. Z-super c. then (F o f)*(U) =
fH(ETU)) = f~1(F*(U)) which is z-open in X. Since f is z-quotient map, F*(U)
is open in Y. Thus F is l. s. c. Conversely, let ' : Y ~ Z be u. s. ¢. Let U be
an open set in Z. By 1. Z-super continuity of Fo f, (Fo f)*(U) = f~Y(F(U)) is
z-open in X. O

4. Complete Regularization

Let (X, 7) be a topological space and let 8 denote the collection of all cozero
subsets of (X, 7). Since the intersection of two cozero sets is a cozero set, the
collection 3 is a base for a topology 7, on X called the complete regularization of
7. Clearly T, C 7. The space (X, 7) is completely regular if and only if 7, = 7 [5].

Throughout the section, the symbol 7, will have the same meaning as in the
above paragraph.

Theorem 18. A multifunction F : (X, 7) ~ (Y, o) is u. Z-super c. if and only
if F:(X, 1)~ (Y, 0) isu. s. c.

Theorem 19. Let (X, 7) be topological space. Then the following are equivalent.
(a) (X, 7) is completely regular.

(b) Ewery upper-lower semi continuous multifunction from (X, 7) into a space
(Y, o) is upper-lower Z-super continuous.

Proof. (a)=-(b): Obvious

(b)=(a): Take (Y, o) = (X, 7). Then the identity multifunction Ix on X is
upper-lower semi continuous and hence upper-lower Z-super continuous. Thus by
Theorem (11) 1x : (X, 7,) — (X, 7) is upper-lower semi continuous. Since U € 7
implies 1}1(U) =U €71, 7 C 71, Therefore 7 = 7z and so (X, 7) is completely
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regular.

References
[1] M. Akdag, On Supercontinuous Multifunctions, Acta Math. Hung., 99(1-2)(2003),
143-153.

[2] M. Akdag, On The Upper and Lower Super D-Continuous Multifunctions, Istanbul
Univ., Sciences Faculty, Journal of Math., 60(2001), 101-109.

[3] Y. Kucuk, On Strongly 0-Continuous Multifunctions, Pure And Appl. Math. Sci.,
40(1994), 43-54.

[4] M. K. Singal, and S. B. Niemse, Z-Continuous Functions, Math. Student, 66(1977),
193-210.

[5] J. K. Kohli, Z-supercontinuous functions, Indian J. Pure appl. Math., 33('7)(2002),
1097-1108.

[6] W. L. Stroter, Continuous Multivalued Functions, Boletim do Sociedade de S. Paulo,
10(1955), 87-120.

[7] N. C. Helderman, Developability and some new regularity azioms, Canad. J. Math.,
33(1981), 641.

[8] Z. Frolik, Generalized of Compact and Lindelof Spaces, Czechoslovak Math. J.,
9(84)(1959), 172-217 (Russian), MR 21#3821.

[9] A. Csa’szar, General Topology, Adam Higler Ltd. Bristol, 1978.

[10] N. V. Velicko, H-Closed Topological Spaces, Amer. Math. Soc. Transl., 78(2)(1968),
103-118.

[11] N. Levine, Strong Continuity in Topological Spaces, Amer. Math. Month., 67(1960),
269.



