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Abstract. In this paper, we define a multifunction F : X ; Y to be upper (lower)

Z−supercontinuous if F+(V ) (F−(V )) is z-open in X for every open set V of Y . We obtain

some characterizations and several properties concerning upper (lower) Z-supercontinuous

multifunctions.

1. Introduction

Several weak and strong variants of continuity of multifunctions occur in the
literature. The strong varients of continuity of multifunctions with we shall be deal-
ing in this paper include [1], [2], [3]. Certain of these strong forms of continuity
of multifunctions coincide with continuity of multifunctions if the domain / range
space is suitably augmented. M. K. Singal and S. B. Niemse [4] defined z-continuous
functions and investigated some properties. In 2003, J. K. Kohli [5] introduced the
concept of Z-supercontinuous functions and some properties of Z-supercontinuous
functions are given by him. In this paper we introduce anew strong form of con-
tinuity of multifunctions called “upper (lower) Z-supercontinuity”, which coincides
with upper (lower) continuity if domain or range is a completely regular space, or if
range is a perfectly normal space. Characterizations and basic properties of upper
(lower) Z-supercontinuous multifunctions are alaboreted in section 3. In section 4,
we show that if the domain of a upper (lower) Z-supercontinuous multifunction F
is retopologized in an approriate way, then F is simply a continuous multifunction.

A multifunction F : X ; Y . is a correspondence from X to Y with F (x) a
nonempty subset of Y , for each x ∈ X. Let A be a subset of a topological space
(X, τ).

o

A and A denote the interior and closure of A respectively. A multifunction
F of a set X into Y is a correspondence such that F (x) is a nonempty subset of
Y for each x ∈ X. We will denote such a multifuntion by F : X ; Y . For a
multifunction F , the upper and lower inverse set of a set B of Y will be denoted
by F+(B) and F−(B) respectively that is F+(B) = {x ∈ X : F (x) ⊆ B} and
F−(B) = {x ∈ X : F (x)∩B 6= ∅}. The graph G(F ) of the multifunction F : X ; Y
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is strongly closed [3] if for each (x, y) /∈ G(F ), there exist open sets U and V
containing x and containing y respectively such that (U × V ) ∩ G(F ) = ∅. [6] A
multifunction F : X ; Y is said to be upper semi continuous (briefly u.s.c.) at a
point x ∈ X if for each open set V in Y with F (x) ⊆ V , there exists an open set U
containing x such that F (U) ⊆ V ; lower semi continuous (briefly l.s.c.) at a point
x ∈ X if for each open set V in Y with F (x) ∩ V 6= ∅, there exists an open set U
containing x such that F (z) ∩ V 6= ∅ for every z ∈ U . A set G in a topological
space X is said to be z-open if for each x ∈ G there exists a cozero set H such that
x ∈ H ⊂ G, or equivalently, if G is expressible as the union of cozero sets. The
complement of a z-open set will be referred to as a z-closed set [5].

Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces and F : X ; Y (resp. f : X → Y ) presents a multivalued
(resp. single valued) function.

2. Preliminaries and basic properties

Definition 1. A multifunction F : X ; Y is said to be

(a) upper Z-supercontinuous (Briefly, u. Z-super c.) at a point x ∈ X if for
every open set V with F (x) ⊂ V , there exists a cozero set U containing x
such that F (U) = ∪{F (u) : u ∈ U} ⊂ V ;

(b) lower Z-supercontinuous (l. Z-super c.) at a point x ∈ X if for every open
set V with F (x) ∩ V 6= ∅, there exists a cozero set U containing x such that
F (u) ∩ V 6= ∅ for every u ∈ U ;

(c) upper Z-supercontinuous (resp. lower Z-supercontinuous) if it has this prop-
erty at each point x ∈ X.

Definition 2([3]).

(a) A multifunction F : X ; Y is called strongly θ- upper semi continuous (s.
θ-u.s.c.) at a point x ∈ X if for any open set V ⊂ Y such that F (x) ⊂ V
there exists an open set U ⊂ X containing x such that F (U) ⊂ V.

(b) A multifunction F : X ; Y is called strongly θ-lower semi continuous (s. θ-
l.s.c.) at a point x ∈ X if for any open set V ⊂ Y such that F (x) ∩ V 6= ∅
there exists an open set U ⊂ X containing x such that F (u)∩V 6= ∅ for every
x ∈ U.

Definition 3([1]).

(a) A multifunction F : X ; Y is called upper supercontinuous (u. super c.) at
a point x ∈ X if for any open set V ⊂ Y such that F (x) ⊂ V there exists an

open set U ⊂ X containing x such that F (
o

U) ⊂ V.
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(b) A multifunction F : X ; Y is called lower supercontinuous (l. super c.) at
a point x ∈ X if for any open set V ⊂ Y such that F (x)∩ V 6= ∅ there exists

an open set U ⊂ X containing x such that F (u) ∩ V 6= ∅ for every x ∈
o

U .

Definition 4([2]).

(a) A multifunction F : X ; Y is called upper D-supercontinuous (u. D-super
c.) at a point x ∈ X if for any open set V ⊂ Y such that F (x) ⊂ V there
exists an open Fσ- set U ⊂ X containing x such that F (U) ⊂ V.

(b) A multifunction F : X ; Y is called lower D-supercontinuous (l. D-super
c.) at a point x ∈ X if for any open set V ⊂ Y such that F (x)∩V 6= ∅ there
exists an open Fσ-set U ⊂ X containing x such that F (u) ∩ V 6= ∅ for every
x ∈ U.

u. Z-super c.(l. Z-super c.) =⇒ u. D-super c. (l. D-super c.)

⇓

u. Strongly θ-c.(l. Strongly θ-c.)
⇓

⇓

u. Super c. (l. super c.) =⇒ u. semi c. (l. semi c.)

The diagram well illustrates the relationships that exist among u. Z-
supercontinuous (l. Z-supercontinuous) and various variants of continuity of mul-
tifunctions defined above. However, none of the above implications in general is
reversible as will be exhibited in the sequel.

We gave examples1 and 2 to show that a u.Strongly θ-c. (l. Strongly θ-c.)
multifunction need not be u. Z-super c. (l. Z-super c.) and that u. D-super c. (l.
D-super c.) multifunction need not be u. Z-super c. (l. Z-super c.).

Example 1([5]). Let X = Y be the Mountain chain space due to Helderman [7]
which is a regular space but not a Dδ-completely regular space [10]. Then the mul-
tifunction F : X ; X , F (x) = {x} for each x ∈ X.is a u. Strongly θ-continuous
(l. Strongly θ-continuous) but not u. Z-supercontinuous (l. Z-supercontinuous).

Example 2. Let X denote the set of positive integers endowed with cofinite topol-
ogy. Then the multifunction F : X ; X, F (x) = {x} for each x ∈ X.is u.
D-supercontinuous (l. D-supercontinuous) but neither u. supercontinuous (l. su-
percontinuous) nor u. Strongly θ-continuous (l. Strongly θ-continuous) and hence
not u Z-supercontinuous (l. Z-supercontinuous).

3. Characterizations
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Definition 5. A set G in a topological space X is said to be z-open if for each
x ∈ G there exists a cozero set H such that x ∈ H ⊂ G, or equivalently, if G is
expressible as the union of cozero sets. The complement of a z-open set will be
referred to as a z-closed set [5].

Theorem 1. The following statements are equivalent for a multifunction F : X ;

Y :

(a) F is u. Z-super c. (l. Z-super c.)

(b) For each open set V ⊆ Y, F+(V ) (F−(V )) is a z-open set in X.

(c) For each closed set K ⊆ Y, F−(K) (F+(K)) is a z-closed set in X.

(d) For each x of X and for each open set V with F (x) ⊂ V (F (x)∩V 6= ∅), there
is a z-open set U containing x such that the implication y ∈ U ⇒ F (y) ⊂ V
is holds (F (y) ∩ V 6= ∅).

Proof. (a) =⇒ (b) : Let V be an open set of Y and x ∈ F+(V ). Then there exist
a cozero set U containing x such that F (U) ⊂ V . Then U ⊂ F+(V ). Since U is
cozero, we have x ∈ U ⊂ F+(V ).

(b) =⇒ (c) : Let K be a closed set of Y . Then Y − K is an open set and
F+(Y −K) = X − F−(K) is z-open. Thus F−(K) is z-closed in X.

(c) =⇒ (b) : Obvious
(b) =⇒ (a) : Let V be an open set of Y containing F (x). Then F+(V ) is z-open

and x ∈ F+(V ). Since F+(V ) is a z-open set there exists a cozero set U containing
x such that U ⊂ F+(V ). Thus F (U) ⊂ F (F+(V )) ⊂ V.

(a) ⇐⇒ (d) : Clear.
The proof for the case where F is l. Z-super c. is similarly proved. ¤

Definition 6. Let X be a topological space and let A ⊂ X. A point x ∈ X is said
to be a z-adherent point of A if every cozero set containing x intersects A. Let Az

denote the set of all z-adherent points of A. Clearly the set A is z-closed if and
only if Az = A. [Kohli, Z-supercontinuous Functions]

Theorem 2. A multifunction F : X ; Y is l. Z-super c. if and only if F (Az) ⊂
F (A) for every A ⊂ X.

Proof. Suppose F is l. Z-super c. Since F (A) is closed in Y , by Theorem (1)
F+(F (A)) is z-closed in X. Also since A ⊂ F+(F (A)), Az ⊂ [F+(F (A))]z =
F+F (Az) Thus F (Az) ⊂ F (F+(F (A))) ⊂ F (A).

Conversely, suppose F (Az) ⊂ F (A) for every A ⊂ X. Let K be any closed set in
Y . Then F ([F+(K)]z) ⊂ F (F+(K)) and F (F+(K)) ⊂ K = K.Hence [F+(K)]z ⊂
F+(K) which shows that F is l. Z-super c. ¤

Theorem 3. A multifunction F from a space X into a space Y is l. Z-super c. if
and only if [F+(B)]z ⊂ F+(B) for every B ⊂ Y .
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Proof. Suppose F is l. Z-super c. Then F+(B) is z-closed in X for every B ⊂ Y
and F+(B) = [F+(B)]z. Hence [F+(B)]z ⊂ F+(B).

Conversely, let K be any closed set in Y . Then [F+(K)]z ⊂ F+(K) = F+(K) ⊂
[F+(K)]z. Thus F+(K) = [F+(K)]z which in turn implies that F is l. Z-super c.
¤

Definition 7. A filter base F is said to z-converge to a point x (written as F z→ x) if
for every cozero set containing x contains a member of F [Kohli, Z-supercontinuous
Functions].

Theorem 4. A multifunction F : X ; Y is l. Z-super c. if and only if for each
x ∈ X and each filter base F that z-converges to x, y is an accumulation point of
F (F) for every y ∈ F (x).

Proof. Assume that F is l. Z-super c. and let F z→ x Let W be an open set
containing y, with y ∈ F (x). Then F (x) ∩ W 6= ∅, x ∈ F−(W ) and F−(W ) is
z-open. Let H be an open cozero set in X such that x ∈ H ⊂ F−(W ). Since F
z→ x there exists U ∈ F such that U ⊂ H. Let F (A) ∈ F (F Then for A,U ∈ F
there is a set U1 of F such that U1 ⊂ A ∩ U . If x ∈ U1, then since U1 ⊂ U ⊂ H,
F (x)∩W 6= ∅. On the other hand if x ∈ A, then since F (x) ⊂ F (A), F (U1) ⊂ F (A)
and since F (U1)∩W 6= ∅, F (A)∩W 6= ∅. Thus y is an accumulation point of F (F).

Conversely, Let W be an open subset of Y containing F (x). Now, the filter F
generated by the filterbase ℵx consisting cozero sets containing x, z-converges to
x. If F is not l. Z-super c. at x, then there is a point x

′ ∈ U for every U ∈ F
such that F (x

′
) ∩ W = ∅. If we define Ũ = x′ ∈ U | F (x′) ∩W = ∅, U ∈ F then

F̃ = Ũ : U ∈ F is a filter such that z-converges to x. Since Ũ ⊂ U , by hypothesis
for each y ∈ F (x), y is an accumulation point of F (F . But for every Ũ ∈ F̃ ,
F (Ũ) ∩W = ∅. This is a contradiction to hypothesis. Hence F is l. Z-super c. at
x. ¤

Theorem 5. If F : X ; Y is u. Z-super c. (l. Z-super c.) and F (X) is endowed
with subspace topology, then F : X ; F (X) is u. Z-super c. (l. Z-super c.)

Proof. Since F : X ; Y is u. Z-super c. (l. Z-super c.), for every open subset V
of Y , F+(V ∩ F (X)) = F+(V ) ∩ F+(F (X)) = F+(V )(F−(V ∩ F (X)) = F−(V ) ∩
F (F (X)) = F−(V )) is z-open. Hence F.X ; F (X) is u. Z-super c. (l. Z-super
c.) ¤

Theorem 6. If F : X ; Y is u. Z-super c. (l. Z-super c.) and G : Y ; Z u. s.
c. (l. s. c.), then G ◦ F is u. Z-super c (l. Z-super c.).

Proof. Let V be an open subset of Z. Then since G is u. s. c. (l. s. c.)
G+(V )(G−(V )) is open subset of Y and since F is u. Z-super c. (l. Z-super c.)
F+(G+(V ))(F−(G−(V ))) is z-open in X. Thus G ◦ F is u. Z-super c. (l. Z-super
c.). ¤

Theorem 7. Let {Fα : X ; Xα, α ∈ ∆} be a family of multifunctions and let
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F : X ;
∏

α∈∆

Xα be defined by F (x) = (Fα(x)). Then F is u. Z-super c. if and

only if each Fα : X ; Xα is u. Z-super c.

Proof. Let Gα0 be an open set of Xα0 . Then

(Pα0 ◦ F )+(Gα0) = F+(P+
α0

(Gα0)) = F+(Gα0 ×
∏

α6=α0

Xα).

Since F is u. Z-super c. F+(Gα0 ×
∏

α 6=α0

Xα). is z-open in X. Thus Pα0 ◦ F = Fα

is u. Z-super c. Here Pα denotes the projection of X onto α- coordinate space Xα.
Conversely, suppose that each Fα : X ; Xα is u. Z-super c. To show that

multifunction F is u. Z-super c., in view of Theorem(1) it is sufficient to show
that F+(V ) is z-open for each open set V in the product space

∏

α∈∆

Xα. Since the

finite intersections and arbitary unions of z-open sets are z-open, it suffices to prove
that F+(S) is z-open for every subbasic open set S in the product space

∏

α∈∆

Xα.

Let Uβ ×
∏

α 6=β

Xα be a subbasic open set in
∏

α∈∆

Xα. Then F+(Uβ ×
∏

α 6=β

Xα) =

F+(P+
β (Uβ)) = F+

β (Uβ) is z-open. Hence F is u. Z-super c. ¤

Theorem 8. Let F : X ; Y be a multifuntion and G : X ; X × Y defined by
G(x) = (x, F (x)) for each x ∈ X be the graph function. Then G is u. Z-super c. if
and only if F is u. Z-super c. and X is completely regular.

Proof. To prove necessity, suppose that G is Z-super c. By Theorem (7) F = PY ◦G
is Z-super c. where PY is the projection from X×Y onto Y . Let U be any open set in
X and let U ×Y be an open set containing G(x). Since G is Z-super c., there exists
a cozero set W containing x such that the implication x′ ∈ W ⇒ G(x′) ⊂ U × Y
holds. Thus x ∈ W ⊂ U , which shows that U is z-open and so X is completely
regular.

To prove sufficiency, let x ∈ X and let W be an open set containing G(x).
There exists open sets U ⊂ X and V ⊂ Y such that (x, F (x)) ⊂ U ×V ⊂ W . Since
X is completely regular, there exists a cozero set G1in X containing x such that
x ∈ G1 ⊂ V . Since F is Z-super c., there exists a cozero set G2 in X containing
x such that the implication x′ ∈ G2 ⇒ F (x′) ⊂ V . Let G1 ∩ G2 = H. Then H
is an cozero set containing x and G(H) ⊂ U × V ⊂ W which implies that G is u.
Z-super c. ¤

Definition 8. Let F : X ; Y be a multifuntion.

(a) F is said to be upper Z-continuous (briefly u. Z-c.) at x ∈ X, if for each
cozero set V with F (x) ⊂ V , there exists an open U set containing x such
that the implication x′ ∈ U ⇒ F (x′) ⊂ V is hold.
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(b) F is said to be lower Z-continuous (briefly l. Z-c.) at x ∈ X, if for each
cozero set V with F (x)∩V 6= ∅, there exists an open set U containing x such
that the implication x′ ∈ U ⇒ F (x′) ∩ V 6= ∅ is hold.

(c) F is said to be Z-continuous (briefly Z-c.) at x ∈ X, if it is both u. Z-c. and
l. Z-c. at x ∈ X.

(d) F is said to be u. Z-c. (l. Z-c., Z-c.) on X, if it has this property at each
point x ∈ X.

Theorem 9. For a multifunction F : X ; Y, the following statements are equiva-
lent:

(a) F is u.Z-c. (l. Z-c.)

(b) For every z-open set V ⊆ Y, F+(V ) (F−(V )) is an open set in X.

(c) For every z-closed set K ⊆ Y, F−(K) (F+(K)) is a closed set in X.

Lemma 1. For a multifunction F : X ; Y , the following statements are equiva-
lent:

(a) F is u. Z-c.

(b) F (A) ⊂ [F (A)]z for all A ⊆ X

(c) F+(B) ⊆ F+([B]z) for all B ⊆ X

(d) For every z-closed set K ⊆ Y, F+(K) is closed

(e) For every z-open set G ⊆ Y, F+(G) is open

Proof. (a)⇒(b): Let y ∈ F (A). Choose x ∈ A such that y ∈ F (x). Let V be
a cozero set containing F (x) so y. Since F is u. Z-c., F+(V ) is an open set
containing x. This gives F+(V ) ∩ A 6= ∅ which in turn implies that V ∩ F (A) 6= ∅
and consequently y ∈ [F (A)]z. Hence F (A) ⊂ [F (A)]z.

(b)⇒(c): Let B be any subset of Y . Then F (F+(B)) ⊆ [F (F+(B))]z ⊆ [B]z
and consequently F+(B) ⊆ F+([B]z).

(c)⇒(d): Since a set K is z-closed if and only if K = [K]z, therefore the
implication (c)⇒(d) is obvious.

(d)⇒(e): Obvious.
(e)⇒(a): Since every cozero set is z-open and since a multifunction is u. Z-c.

if and only if the inverse image of every cozero set is open. Hence (e)⇒(a). ¤

Theorem 10. Let X, Y and Z be topological spaces and let the function F : X ; Y
be u. Z-c. and G : Y ; Z be u. Z-super c. Then G ◦ F : X ; Z is u.s.c.

Proof. Since (G◦F )+(V ) = F+(G+(V )), it is immediate in view of Lemma (1) and
Theorem (1). ¤

Theorem 11. Let F : X ; Y be a u. s. c. (l. s. c.) multifunction defined on a
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completely regular space. Then F is u. Z-super c. (l. Z-super c.).

Proof. In a completely regular space, every open set is z-open. ¤

Theorem 12. Let F : X ; Y be a u. s. c. (l. s. c.) multifunction. If Y is
perfectly normal space, then F is u. Z-super c. (l. Z-super c.).

Proof. In a perfectly normal space, every open set is a cozero set and a u. s. c. (l.
s. c.) multifunction lifts cozero sets to cozero set. ¤

Theorem 13. Let F : X ; Y be a u. s. c. (l. s. c.) multifunction defined on a
completely regular space. Then F is u. Z-super c. (l. Z-super c.).

Proof. In a completely regular space every open set is z-open and it is easily verified
that a u. s. c. (l. s. c.) multifunction lifts z-open sets to z-open sets. ¤

Definition 9 ([8]). We may recall that a space X is quasi compact if every cover
of X by cozero sets admits a finite subcover.

Theorem 14. Let F : X ; Y be u. Z-super c. (l. Z-super c.) multifunction from
a quasi compact space onto Y . Then Y is compact.

Proof. Let ℘ = {vα : α ∈ ∆} be an open cover of Y. Then each F+(Vα) is a z-open
set in X and so it is a union of cozero sets. This in turn yields a cover ~ of X
consisting of cozero sets. Since X is quasi compact there is a finite subcollection
{C1, C2, C3, · · · , Cn} of ~which covers X. Suppose Ci ⊂ F+(Vαi) for some αi ∈ ∆
(i = 1, 2, · · · , n). then {V α1, V α2, · · · , V αn} is a finite subcover of ℘. Thus X is
compact. ¤

Definition 10 ([9]). A space X is said to be almost compact if every open covering
of X has a finite subcollection the closures of whose members covers X.

Definition 11 ([10]). Let X be a topological space and let A ⊂ X. A point x ∈ X
is called a θ-limit point of A if every closed neighborhood of x intersects A. Let clθA
denote the set of all θ-limit points of A. The set A is called θ-closed if A = clθA.
The complement of a θ-closed set is called a θ-open set.

Definition 12 ([10]). A space X called θ-compact if every θ-open cover of X has
a finite subcover.

It is observed in [11] that every almost θ-compact space is θ-compact and every
θ-compact space is quasi compact. However, none of the reverse implications hold.

The following corollaries are immediate from Theorem (14).

Corollary 1. If F : X ; Y is a u. Z-super c. (l. Z-super c.) multifunction from
a θ-compact space X onto Y . Then Y is compact.

Corollary 2. If F : X ; Y is a u. Z-super c. (l. Z-super c.) multifunction from
an almost compact space X onto Y . Then Y is compact.

Theorem 15. Let F : X ; Y be a u. Z-c. (l. Z-c.) multifunction from a quasi
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compact space X onto a space Y . Then Y is quasi compact.
We omit simple proof of Theorem (15).

Definition 13 ([5]). Let f : X → Y be a surjection from a topological space X
onto a setY . The topology on Y for which a subset A ⊂ Y is open if and only if
f−1(A) is z-open in X is called the z-quotient topology and the map f is called the
z-quotient map.

Theorem 16. Let F be a multifunction from a topological space (X, τ1) onto a
topological the space (Y, τ2), where τ2 is z-quotient topology on Y . Then F is l.
Z-super c. Moreover τ2 is the finite topology on Y which makes F : X ; Y l.
Z-super c.

Proof. The l. Z-super continuity of F follows from the definition of z-quotient
topology. ¤

Theorem 17. Let f : X → Y be a z-quotient map. Then a multifunction F : Y ;

Z is l. s. c. if and only if F ◦ f is l. Z-super c.

Proof. If U is an open set in Z and F ◦ f is l. Z-super c. then (F ◦ f)+(U) =
f+(F+(U)) = f−1(F+(U)) which is z-open in X. Since f is z-quotient map, F+(U)
is open in Y . Thus F is l. s. c. Conversely, let F : Y ; Z be u. s. c. Let U be
an open set in Z. By l. Z-super continuity of F ◦ f , (F ◦ f)+(U) = f−1(F+(U)) is
z-open in X. ¤

4. Complete Regularization

Let (X, τ) be a topological space and let β denote the collection of all cozero
subsets of (X, τ). Since the intersection of two cozero sets is a cozero set, the
collection β is a base for a topology τz on X called the complete regularization of
τ. Clearly τz ⊂ τ. The space (X, τ) is completely regular if and only if τz = τ [5].

Throughout the section, the symbol τz will have the same meaning as in the
above paragraph.

Theorem 18. A multifunction F : (X, τ) ; (Y, σ) is u. Z-super c. if and only
if F : (X, τ) ; (Y, σ) is u. s. c.

Theorem 19. Let (X, τ) be topological space.Then the following are equivalent.

(a) (X, τ) is completely regular.

(b) Every upper-lower semi continuous multifunction from (X, τ) into a space
(Y, σ) is upper-lower Z-super continuous.

Proof. (a)⇒(b): Obvious
(b)⇒(a): Take (Y, σ) = (X, τ). Then the identity multifunction IX on X is

upper-lower semi continuous and hence upper-lower Z-super continuous. Thus by
Theorem (11) 1X : (X, τz) → (X, τ) is upper-lower semi continuous. Since U ∈ τ
implies 1−1

X (U) = U ∈ τz, τ ⊂ τz. Therefore τ = τz and so (X, τ) is completely
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regular.
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